DOI QR코드

DOI QR Code

Fragment Molecular Orbital Method: Application to Protein-Ligand Binding

  • Received : 2010.05.31
  • Accepted : 2010.06.07
  • Published : 2010.06.30

Abstract

Fragment molecular orbital (FMO) method provides a novel tool for ab initio calculations of large biomolecules. This method overcomes the size limitation difficulties in conventional molecular orbital methods and has several advantages compared to classical force field approaches. While there are many features in this method, we here focus on explaining the issues related to protein-ligand binding: FMO method provides useful interaction-analysis tools such as IFIE, CAFI and FILM. FMO calculations can provide not only binding energies, which are well correlated with experimental binding affinity, but also QSAR descriptors. In addition, FMO-derived charges improve the descriptions of electrostatic properties and the correlations between docking scores and experimental binding affinities. These calculations can be performed by the ABINIT-MPX program and the calculation results can be visualized by its proper BioStation Viewer. The acceleration of FMO calculations on various computer facilities is ongoing, and we are also developing methods to deal with cytochrome P450, which belongs to the family of drug metabolic enzymes.

Keywords

References

  1. Amari, S. Aizawa, M., Zhang, J., Fukuzawa, K., Mochizuki, Y., Iwasawa, Y., Nakata, K., Chuman, H. and Nakano T., VISCANA: Visualized Cluster Analysis of Protein-Ligand Interaction Based onthe ab Initio Fragment Molecular Orbital Method for Virtual Ligand Screening, J. Chem. Inf. Comput. Sci. 46 (2006) 221-230. https://doi.org/10.1021/ci050262q
  2. Fedorov, D. G, Kitaura, K., Li, H., Jensen, J. H. and Gordon, M. S. (2006) The polarizable continuum model (PCM) interfaced with the fragment molecular orbital method (FMO), J. Comp. Chem. 27 976-985. https://doi.org/10.1002/jcc.20406
  3. Fischer, B., Fukuzawa, K. and Wenzel, W. (2008) Receptor-specific scoring functions derived from quantum chemical models improve affinity estimates for in-silico drug discovery, Proteins: Struct., Funct., Bioinf. 70 1264-1273. https://doi.org/10.1002/prot.21607
  4. Fukuzawa, K., Kitaura, K., Uebayasi, M., Nakata, N., Kaminuma T. and Nakano, T. (2005) Ab initio quantum mechanical study of the binding energies of human estrogen receptor with its ligands: An application of fragment molecular orbital method, J. Comput. Chem. 26 1-10. https://doi.org/10.1002/jcc.20130
  5. Fukuzawa, K., Mochizuki, Y., Tanaka, S., Kitaura, K., Nakano, T. (2006) Molecular Interactions between Estrogen Receptor and Its Ligand Studied by the ab Initio Fragment Molecular Orbital Method, J. Phys. Chem. B 110 16102-16110. https://doi.org/10.1021/jp060770i
  6. Fujitani, H., Tanida, Y., Matsuura, A. (2009) Massively parallel computation of absolute binding free energy with well-equilibrated states, Phys. Rev. E 79 021914. https://doi.org/10.1103/PhysRevE.79.021914
  7. Harada, T., Yamagishi, K., Nakano, N., Kitaura, K. and Tokiwa, H. (2008) Ab initio fragment molecular orbital study of ligand binding to human progesterone receptor ligand-binding domain, Naunyn-Schmiedeberg's Arch. Pharmac. 377 607-615.
  8. Ishikawa, T., Mochizuki, Y., Nakano, T., Amari, S., Mori, H., Honda, H., Fujita, T., Tokiwa, H., Tanaka, S., Komeiji, Y., Fukuzawa, K., Tanaka, K. and Miyoshi, E. (2006) Fragment molecular orbital calculations on large scale systems containing heavy metal atom, Chem. Phys. Lett. 427 159-165. https://doi.org/10.1016/j.cplett.2006.06.103
  9. Ishikawa, T., Mochizuki, Y., Amari, S., Nakano, T., Tokiwa, H., Tanaka, S. and Tanaka, K. (2007) Fragment interaction analysis based on local MP2, Theor. Chem. Acc. 118 937-945. https://doi.org/10.1007/s00214-007-0374-7
  10. Ishikawa, T., Mochizuki, Y., Amari, S., Nakano, T., Tanaka, S. and Tanaka, K. (2008) An application of fragment interaction analysis based on local MP2, Chem. Phys. Lett. 463 189-194. https://doi.org/10.1016/j.cplett.2008.08.022
  11. Ito, M., Fukuzawa, K., Mochizuki, Y., Nakano, T. and Tanaka, S. (2007) Ab Initio Fragment Molecular Orbital Study of Molecular Interactions between Liganded Retinoid X Receptor and Its Coactivator: Roles of Helix 12 in the Coactivator Binding Mechanism, J. Phys. Chem. B 111 3525-3533. https://doi.org/10.1021/jp070054w
  12. Ito, M., Fukuzawa, K., Mochizuki, Y., Nakano, T., Tanaka, S. (2008 a) Ab Initio Fragment Molecular Orbital Study of Molecular Interactions between Liganded Retinoid X Receptor and Its Coactivator; Part II: Influence of Mutations in Transcriptional Activation Function 2 Activating Domain Core on the Molecular Interactions, , J. Phys. Chem. A 112 1986-1998. https://doi.org/10.1021/jp075430r
  13. Ito, M., Fukuzawa, K., Ishikawa, T., Mochizuki, Y., Nakano, T., Tanaka S. (2008 b) Ab Initio Fragment Molecular Orbital Study of Molecular Interactions in Liganded Retinoid X Receptor: Specification of Residues Associated with Ligand Inducible Information Transmission, , J. Phys. Chem. B. 112 (2008) 12081-12094. https://doi.org/10.1021/jp803369x
  14. Kurisaki, I., Fukuzawa, K., Komeiji, Y., Mochizuki, Y., Nakano, T., Imada, J., Chmielewski, A., Rothstein, S. M., Watanabe, H., Tanaka S. (2007) Visualization analysis of inter-fragment interaction energies of CRP-cAMP-DNA complex based on the fragment molecular orbital method, Biophys. Chem. 130 1-9. https://doi.org/10.1016/j.bpc.2007.06.011
  15. Li, H., Fedorov, D.G., Nagata, T., Kitaura, K., Jensen, J. H., Gordon M. S. (2010) Energy gradients in combined fragment molecular orbital and polarizable continuum model (FMO/PCM) calculation. J. Comp. Chem. 31 778-790.
  16. Mochizuki, M., Koikegami, S., Nakano, T., Amari S. and Kitaura K. (2004a) Large scale MP2 calculations with fragment molecular orbital scheme, Chem. Phys. Lett. 396, 473-479. https://doi.org/10.1016/j.cplett.2004.08.082
  17. Mochizuki, Y., Nakano, T., Koikegami, S., Tanimori, S., Abe, Y., Nagashima U. and Kitaura K. (2004b) A parallelized integraldirect second-order Moeller-Plesset perturbation theory method with a fragment molecular orbital scheme, Theor. Chem. Acc. 112 442-452. https://doi.org/10.1007/s00214-004-0602-3
  18. Mochizuki, Y., Fukuzawa, K., Kato, A., Tanaka, S., Kitaura, K. and Nakano, T. (2005) A configuration analysis for fragment interaction, , Chem. Phys. Lett. 410 247-253. https://doi.org/10.1016/j.cplett.2005.05.079
  19. Mochizuki, Y., Yamashita, K., Murase, T., Nakano, T., Fukuzawa, K., Takematsu, K., Watanabe, H. and Tanaka S. (2008) Large scale FMO-MP2 calculations on a massively parallel-vector computer, Chem. Phys. Lett. 457 396-403. https://doi.org/10.1016/j.cplett.2008.03.090
  20. Nakano, T., Kaminuma, T., Sato, T., Akiyama, Y., Uebayasi, M. and Kitaura, K. (2000) Fragment molecular orbital method: application to polypeptides. Chem. Phys. Lett. 318 614-618. https://doi.org/10.1016/S0009-2614(00)00070-1
  21. Nakano, T., Kaminuma, T., Sato, T., Fukuzawa, K., Akiyama, Y., Uebayasi and M., Kitaura, K. (2002) Fragment molecular orbital method: use of approximate electrostatic potential, Chem. Phys. Lett. 351 475-480. https://doi.org/10.1016/S0009-2614(01)01416-6
  22. Okiyama, Y., Watanabe, H., Fukuzawa, K., Nakano, T., Mochizuki, Y., Ishikawa, T., Tanaka, S., Ebina K. (2007) Application of the fragment molecular orbital method for determination of atomic charges on polypeptides, Chem. Phys. Lett. 449 329-335. https://doi.org/10.1016/j.cplett.2007.10.066
  23. Okiyama, Y., Watanabe, H., Fukuzawa, K., Nakano, T., Mochizuki, Y., Ishikawa, T., Ebina, K., Tanaka, S. (2009) Application of the fragment molecular orbital method for determination of atomic charges on polypeptides. II. Towards an improvement of force fields used for classical molecular dynamics simulations, Chem. Phys. Lett. 467 417-423. https://doi.org/10.1016/j.cplett.2008.11.044
  24. Okiyama, Y., Nakano, T., Yamashita, K., Mochizuki, Y., Taguchi, N., Tanaka S. (2010) Acceleration of fragment molecular orbital calculations with Cholesky decomposition approach, Chem. Phys. Lett. 490 84-89. https://doi.org/10.1016/j.cplett.2010.03.001
  25. Rezac, J., Jurecka, P., Riley, K. E., Cerny, J., Valdes, H., Pluhackova, K., Berka, K.; Rezac, T.; Pitonak, M.; Vondrasek, J.; Hobza, P. (2008) Quantum Chemical Benchmark Energy and Geometry Database for Molecular Clusters and Complex Molecular Systems (www.begdb.com): A Users Manual and Examples, Collect. Czech. Chem. Commun. 73, 1261-1270. https://doi.org/10.1135/cccc20081261
  26. Szabo, A. and Ostlund, N. S. (1982) Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory, McGraw-Hill, New York.
  27. Yamagishi, K., Yamamoto, K. Yamada S., and H. Tokiwa (2006) Functions of key residues in the ligand-binding pocket of vitamin D receptor: Fragment molecular orbital-interfragment interaction energy analysis, Chem. Phys. Lett. 420 (2006) 465-468. https://doi.org/10.1016/j.cplett.2005.12.078
  28. Yoda, T., Sugita, Y., Okamoto, Y. (2004) Comparisons of force fields for proteins by generalized-ensemble simulations, Chem. Phys. Lett. 386 460-467. https://doi.org/10.1016/j.cplett.2004.01.078
  29. Yoshida, T., Yamagishi, K., Chuman, H. (2008) QSAR Study of Cyclic Urea Type HIV-1 PR Inhibitors Using Ab Initio MO Calculation of Their Complex Structures with HIV-1, QSAR Comb. Sci. 27 694-703. https://doi.org/10.1002/qsar.200730108
  30. Yoshida, T., Fujita, T., Chuman, H., (2009) Novel Quantitative Structure-Activity Studies of HIV-1 Protease Inhibitors of the Cyclic Urea Type Using Descriptors Derived from Molecular Dynamics and Molecular Orbital Calculations, Curr. Comp.- Aided Drug Des. 5 38-55. https://doi.org/10.2174/157340909787580845
  31. Watanabe, H., Tanaka, S., Okimoto, N., Hasegawa, A., Taiji. M., Tanida Y., Mitsui T., Katsuyama M., Fujitani, H., (2010) Comparison of binding affinity evaluations for FKBP ligands with state-of-the-art computational methods: FMO, QM/MM, MMPB/SA and MP-CAFEE approaches, Chem-Bio Informatics Journal 10 32-45. https://doi.org/10.1273/cbij.10.32

Cited by

  1. Use of QM/MM scheme to reproduce macromolecule–small molecule noncovalent binding energy vol.991, 2012, https://doi.org/10.1016/j.comptc.2012.04.010
  2. Fragment library design considerations vol.2, pp.6, 2012, https://doi.org/10.1002/wcms.1098