Browse > Article
http://dx.doi.org/10.4062/biomolther.2011.19.1.001

Platform Technologies for Research on the G Protein Coupled Receptor: Applications to Drug Discovery Research  

Lee, Sung-Hou (Department of Biomedical Technology, College of Engineering, Sangmyung University)
Publication Information
Biomolecules & Therapeutics / v.19, no.1, 2011 , pp. 1-8 More about this Journal
Abstract
G-protein coupled receptors (GPCRs) constitute an important class of drug targets and are involved in every aspect of human physiology including sleep regulation, blood pressure, mood, food intake, perception of pain, control of cancer growth, and immune response. Radiometric assays have been the classic method used during the search for potential therapeutics acting at various GPCRs for most GPCR-based drug discovery research programs. An increasing number of diverse small molecules, together with novel GPCR targets identified from genomics efforts, necessitates the use of high-throughput assays with a good sensitivity and specificity. Currently, a wide array of high-throughput tools for research on GPCRs is available and can be used to study receptor-ligand interaction, receptor driven functional response, receptor-receptor interaction,and receptor internalization. Many of the assay technologies are based on luminescence or fluorescence and can be easily applied in cell based models to reduce gaps between in vitro and in vivo studies for drug discovery processes. Especially, cell based models for GPCR can be efficiently employed to deconvolute the integrated information concerning the ligand-receptor-function axis obtained from label-free detection technology. This review covers various platform technologies used for the research of GPCRs, concentrating on the principal, non-radiometric homogeneous assay technologies. As current technology is rapidly advancing, the combination of probe chemistry, optical instruments, and GPCR biology will provide us with many new technologies to apply in the future.
Keywords
G protein coupled receptor; Calcium mobilization; Drug discovery; Receptor interaction; Time resolved fluorescence; Luminescence;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Vilardaga, J. P., Nikolaev, V. O., Lorenz, K., Ferrandon, S., Zhuang, Z. and Lohse, M. J. (2008) Conformational cross-talk between alpha2A-adrenergic and mu-opioid receptors controls cell signaling. Nat. Chem. Biol. 4, 126-131.   DOI
2 Waldhoer, M., Fong, J., Jones, R. M., Lunzer, M. M., Sharma, S. K., Kostenis, E., Portoghese, P. S. and Whistler, J. L. (2005) A heterodimer-selective agonist shows in vivo relevance of G proteincoupled receptor dimers. Proc. Natl. Acad. Sci. USA. 102, 9050-9055.   DOI
3 Wang, H. B., Guan, J. S., Bao, L. and Zhang, X. (2008) Distinct subcellular distribution of delta-opioid receptor fused with various tags in PC12 cells. Neurochem. Res. 33, 2028-2034.   DOI
4 Wu, S. and Liu, B. (2005). Application of scintillation proximity assay in drug discovery. Bio. Drugs 19, 383-392.
5 Xie, Z., Bhushan, R. G., Daniels, D. J. and Portoghese, P. S. (2005) Interaction of bivalent ligand KDN21 with heterodimeric delta-kappa opioid receptors in human embryonic kidney 293 cells. Mol. Pharmacol. 68, 1079-1086.   DOI
6 Zhao, X., Jones, A., Olson, K. R., Peng, K., Wehrman, T., Park, A., Mallari, R., Nebalasca, D., Young, S. W. and Xiao, S. H. (2008) A homogeneous enzyme fragment complementation-based beta-arrestin translocation assay for high-throughput screening of G-protein-coupled receptors. J. Biomol. Screen 13, 737-747.   DOI
7 Soriano, A., Ventura, R., Molero, A., Hoen, R., Casado, V., Cortes, A., Fanelli, F., Albericio, F., Lluis, C., Franco, R. and Royo, M. (2009) Adenosine A2A receptor-antagonist/dopamine D2 receptor-agonist bivalent ligands as pharmacological tools to detect A2A-D2 receptor heteromers. J. Med. Chem. 52, 5590-5602.   DOI
8 Stables, J., Green, A., Marshall, F., Fraser, N., Knight, E., Sautel, M., Milligan, G., Lee, M. and Rees, S. (1997) A bioluminescent assay for agonist activity at potentially any G-protein-coupled receptor. Anal. Biochem. 252, 115-126.   DOI
9 Tamayama, T., Maemura, K., Kanbara, K., Hayasaki, H., Yabumoto, Y., Yuasa, M. and Watanabe, M. (2005) Expression of GABA(A) and GABA(B) receptors in rat growth plate chondrocytes: activation of the GABA receptors promotes proliferation of mouse chondrogenic ATDC5 cells. Mol. Cell Biochem. 273, 117-126.   DOI
10 Tabata, T., Araishi, K., Hashimoto, K., Hashimotodani, Y., van der Putten, H., Bettler, B. and Kano, M. (2004) Ca2+ activity at GABAB receptors constitutively promotes metabotropic glutamate signaling in the absence of GABA. Proc. Natl. Acad. Sci. USA. 101, 16952-16957.   DOI
11 Toms, N. J. and Roberts, P. J. (1999) Group 1 mGlu receptors elevate [Ca2+]i in rat cultured cortical type 2 astrocytes: [Ca2+]i synergy with adenosine A1 receptors. Neuropharmacology 38, 1511-1517.   DOI
12 Verdonk, E., Johnson, K., McGuinness, R., Leung, G., Chen, Y. W., Tang, H. R., Michelotti, J. M. and Liu, V. F. (2006) Cellular dielectric spectroscopy: a label-free comprehensive platform for functional evaluation of endogenous receptors. Assay Drug Dev. Technol. 4, 609-619.   DOI
13 Vidi, P. A. and Watts, V. J. (2009) Fluorescent and bioluminescent protein-fragment complementation assays in the study of G protein-coupled receptor oligomerization and signaling. Mol. Pharmacol. 75, 733-739.   DOI
14 Rink, T. J. (1990) Receptor-mediated calcium entry. FEBS Lett. 268, 381-385.   DOI
15 Rives, M. L., Vol, C., Fukazawa, Y., Tinel, N., Trinquet, E., Ayoub, M. A., Shigemoto, R., Pin, J. P. and Prezeau, L. (2009) Crosstalk between GABAB and mGlu1a receptors reveals new insight into GPCR signal integration. EMBO J. 28, 2195-2208.   DOI
16 Rozenfeld, R. and Devi, L. A. (2010) Receptor heteromerization and drug discovery. Trends Pharmacol. Sci. 31, 124-130.   DOI
17 Shenoy, S. K. and Lefkowitz, R. J. (2003) Multifaceted roles of beta-arrestins in the regulation of seven-membrane-spanning receptor traffi cking and signalling. Biochem. J. 375, 503-515.   DOI
18 Rubenstein, K. (2008). GPCRs: Dawn of a new era? Insight Pharma. Reports., Needham.
19 Sanger, G. J., Westaway, S. M., Barnes, A. A., Macpherson, D. T., Muir, A. I., Jarvie, E. M., Bolton, V. N., Cellek, S., Naslund, E., Hellstrom, P. M., Borman, R. A., Unsworth, W. P., Matthews, K. L. and Lee, K. (2009) GSK962040: a small molecule, selective motilin receptor agonist, effective as a stimulant of human and rabbit gastrointestinal motility. Neurogastroenterol. Motil. 21, 657-664, e630-651.   DOI
20 Schroder, R., Janssen, N., Schmidt, J., Kebig, A., Merten, N., Hennen, S., Muller, A., Blattermann, S., Mohr-Andra, M., Zahn, S., Wenzel, J., Smith, N. J., Gomeza, J., Drewke, C., Milligan, G., Mohr, K. and Kostenis, E. (2010) Deconvolution of complex G protein-coupled receptor signaling in live cells using dynamic mass redistribution measurements. Nat. Biotechnol. 28, 943-949.   DOI
21 Small, K. M., Schwarb, M. R., Glinka, C., Theiss, C. T., Brown, K. M., Seman, C. A. and Liggett, S. B. (2006) Alpha2A- and alpha2C-adrenergic receptors form homo- and heterodimers: the heterodimeric state impairs agonist-promoted GRK phosphorylation and beta-arrestin recruitment. Biochemistry 45, 4760-4767.   DOI
22 Maurel, D., Comps-Agrar, L., Brock, C., Rives, M. L., Bourrier, E., Ayoub, M. A., Bazin, H., Tinel, N., Durroux, T., Prezeau, L., Trinquet, E. and Pin, J. P. (2008) Cell-surface protein-protein interaction analysis with time-resolved FRET and snap-tag technologies: application to GPCR oligomerization. Nat. Methods 5, 561-567.   DOI
23 Maurel, D., Kniazeff, J., Mathis, G., Trinquet, E., Pin, J. P. and Ansanay, H. (2004) Cell surface detection of membrane protein interaction with homogeneous time-resolved fl uorescence resonance energy transfer technology. Anal. Biochem. 329, 253-262.   DOI
24 Perry, S. J. and Lefkowitz, R. J. (2002) Arresting developments in heptahelical receptor signaling and regulation. Trends Cell Biol. 12, 130-138.   DOI
25 McGrath, J. C., Arribas, S. and Daly, C. J. (1996) Fluorescent ligands for the study of receptors [published erratum appears in Trends Pharmacol Sci 1997 May;18(5):181]. Trends Pharmacol. Sci. 17, 393-399.   DOI
26 McGuinness, D., Malikzay, A., Visconti, R., Lin, K., Bayne, M., Monsma, F. and Lunn, C. A. (2009) Characterizing cannabinoid CB2 receptor ligands using DiscoveRx PathHunter beta-arrestin assay. J. Biomol. Screen 14, 49-58.
27 Oakley, R. H., Hudson, C. C., Cruickshank, R. D., Meyers, D. M., Payne, R. E. Jr., Rhem, S. M. and Loomis, C. R. (2002) The cellular distribution of fl uorescently labeled arrestins provides a robust, sensitive, and universal assay for screening G protein-coupled receptors. Assay Drug Dev. Technol. 1, 21-30.   DOI
28 Peters, M. F., Knappenberger, K. S., Wilkins, D., Sygowski, L. A., Lazor, L. A., Liu, J. and Scott, C. W. (2007) Evaluation of cellular dielectric spectroscopy, a whole-cell, label-free technology for drug discovery on Gi-coupled GPCRs. J. Biomol. Screen 12, 312-319.   DOI
29 Pinilla, C., Appel, J. R., Borras, E. and Houghten, R. A. (2003) Advances in the use of synthetic combinatorial chemistry: mixture-based libraries. Nat. Med 9, 118-122.   DOI
30 Le Poul, E., Hisada, S., Mizuguchi, Y., Dupriez, V. J., Burgeon, E. and Detheux, M. (2002) Adaptation of aequorin functional assay to high throughput screening. J. Biomol. Screen. 7, 57-65.   DOI
31 Lee, S., Kim, G. D., Park, W. K., Cho, H., Lee, B. H., Yoo, S. E. and Jae Yang, K. (2006) Development of a time-resolved fl uorometric assay for the high throughput screening of melanin concentrating hormone receptor antagonists. J. Pharmacol. Toxicol. Methods. 53, 242-247.   DOI
32 Lohse, M. J., Benovic, J. L., Codina, J., Caron, M. G. and Lefkowitz, R. J. (1990). beta-Arrestin: a protein that regulates beta-adrenergic receptor function. Science 248, 1547-1550.   DOI
33 Lefkowitz, R. J. (2004) Historical review: a brief history and personal retrospective of seven-transmembrane receptors. Trends Pharmacol. Sci. 25, 413-422.   DOI
34 Lin, F. T., Miller, W. E., Luttrell, L. M. and Lefkowitz, R. J. (1999) Feedback regulation of beta-arrestin1 function by extracellular signal-regulated kinases. J. Biol. Chem. 274, 15971-15974.   DOI
35 Liu, J., Gallagher, M., Horlick, R. A., Robbins, A. K. and Webb, M. L. (1998) A time resolved fluorometric assay for galanin receptors. J. Biomol. Screen 3, 19-27.   DOI
36 Luttrell, L. M. and Lefkowitz, R. J. (2002) The role of beta-arrestins in the termination and transduction of G-protein-coupled receptor signals. J. Cell. Sci. 115, 455-465.
37 Maeda, A., Nishimura, S., Kameda, K., Imagawa, T., Shigekawa, M. and Barsoumian, E. L. (1996) Generation of cell transfectants expressing cardiac calcium ion channel and calcium indicator protein aequorin. Anal. Biochem. 242, 31-39.   DOI
38 Marcellino, D., Ferre, S., Casado, V., Cortes, A., Le Foll, B., Mazzola, C., Drago, F., Saur, O., Stark, H., Soriano, A., Barnes, C., Goldberg, S. R., Lluis, C., Fuxe, K. and Franco, R. (2008) Identifi cation of dopamine D1-D3 receptor heteromers. Indications for a role of synergistic D1-D3 receptor interactions in the striatum. J. Biol. Chem. 283, 26016-26025.   DOI
39 Handl, H. L. and Gillies, R. J. (2005) Lanthanide-based luminescent assays for ligand-receptor interactions. Life Sci. 77, 361-371.   DOI
40 Handl, H. L., Vagner, J., Yamamura, H. I., Hruby, V. J. and Gillies, R. J. (2004) Lanthanide-based time-resolved fl uorescence of in cyto ligand-receptor interactions. Anal. Biochem. 330, 242-250.   DOI
41 Hirono, M., Yoshioka, T. and Konishi, S. (2001) GABA(B) receptor activation enhances mGluR-mediated responses at cerebellar excitatory synapses. Nat. Neurosci. 4, 1207-1216.
42 Handl, H. L., Vagner, J., Yamamura, H. I., Hruby, V. J. and Gillies, R. J. (2005) Development of a lanthanide-based assay for detection of receptor-ligand interactions at the delta-opioid receptor. Anal. Biochem. 343, 299-307.   DOI
43 Hedley, L., Phagoo, S. B. and James, I. F. (1996) Measurement of intracellular calcium in cell populations loaded with aequorin: neurokinin-1 responses in U373MG cells. Anal. Biochem. 236, 270-274.   DOI
44 Hemmila, I. I. (1999) LANCEtrade mark: Homogeneous Assay Platform for HTS. J. Biomol. Screen. 4, 303-308.   DOI
45 Inglese, J., Samama, P., Patel, S., Burbaum, J., Stroke, I. L. and Appell, K. C. (1998) Chemokine receptor-ligand interactions measured using time-resolved fluorescence. Biochemistry 37, 2372-2377.   DOI
46 Jalink, K. and Moolenaar, W. H. (2010) G protein-coupled receptors: the inside story. Bioessays 32, 13-16.   DOI
47 Jansson, C. C., Pohjanoksa, K., Lang, J., Wurster, S., Savola, J. M. and Scheinin, M. (1999) Alpha2-adrenoceptor agonists stimulate high-affi nity GTPase activity in a receptor subtype-selective manner. Eur. J. Pharmacol. 374, 137-146.   DOI
48 Kamikubo, Y., Tabata, T., Kakizawa, S., Kawakami, D., Watanabe, M., Ogura, A., Iino, M. and Kano, M. (2007) Postsynaptic GABAB receptor signalling enhances LTD in mouse cerebellar Purkinje cells. J. Physiol. 585, 549-563.   DOI
49 Franco, R., Casado, V., Cortes, A., Mallol, J., Ciruela, F., Ferre, S., Lluis, C. and Canela, E. I. (2008) G-protein-coupled receptor heteromers: function and ligand pharmacology. Br. J. Pharmacol. 153(Suppl 1), S90-98.   DOI
50 Gagne, A., Banks, P. and Hurt, S. D. (2002) Use of fl uorescence polarization detection for the measurement of fl uopeptidet binding to G protein-coupled receptors. J. Recept. Signal. Transduct. Res. 22, 333-343.   DOI
51 Gainetdinov, R. R., Premont, R. T., Bohn, L. M., Lefkowitz, R. J. and Caron, M. G. (2004) Desensitization of G protein-coupled receptors and neuronal functions. Annu. Rev. Neurosci. 27, 107-144.   DOI
52 Gao, X., Hsu, C. K., Heinz, L. J., Morin, J., Shi, Y., Shukla, N. K., Smiley, D. L., Xu, J., Zhong, B. and Slieker, L. J. (2004) Europiumlabeled melanin-concentrating hormone analogues: ligands for measuring binding to melanin-concentrating hormone receptors 1 and 2. Anal. Biochem. 328, 187-195.   DOI
53 Glickman, J. F., Schmid, A. and Ferrand, S. (2008) Scintillation proximity assays in high-throughput screening. Assay. Drug. Dev. Technol. 6, 433-455.   DOI
54 Gonzalez-Maeso, J., Ang, R. L., Yuen, T., Chan, P., Weisstaub, N. V., Lopez-Gimenez, J. F., Zhou, M., Okawa, Y., Callado, L. F., Milligan, G., Gingrich, J. A., Filizola, M., Meana, J. J. and Sealfon, S. C. (2008) Identifi cation of a serotonin/glutamate receptor complex implicated in psychosis. Nature 452, 93-97.   DOI
55 Hamdan, F. F., Percherancier, Y., Breton, B. and Bouvier, M. (2006) Monitoring protein-protein interactions in living cells by bioluminescence resonance energy transfer (BRET). Curr Protoc Neurosci. Chapter 5, Unit 5. 23, John Wiley & Sons, Somerset.
56 Hampton, S. L. and Kinnaird, A. I. (2010) Genetic interventions in mammalian cells; applications and uses in high-throughput screening and drug discovery. Cell Biol. Toxicol. 26, 43-55.   DOI
57 Dodgson, K., Gedge, L., Murray, D. C. and Coldwell, M. (2009) A 100K well screen for a muscarinic receptor using the Epic labelfree system--a refl ection on the benefi ts of the label-free approach to screening seven-transmembrane receptors. J. Recept. Signal. Transduct. Res. 29, 163-172.   DOI
58 Fan, F., Binkowski, B. F., Butler, B. L., Stecha, P. F., Lewis, M. K. and Wood, K. V. (2008) Novel genetically encoded biosensors using firefly luciferase. ACS Chem. Biol. 3, 346-351.   DOI
59 Dupriez, V. J., Maes, K., Le Poul, E., Burgeon, E. and Detheux, M. (2002) Aequorin-based functional assays for G-protein-coupled receptors, ion channels, and tyrosine kinase receptors. Receptors Channels 8, 319-330.   DOI
60 Eapen, M. S., Sodhi, R., Balakrishnan, G., Dastidar, S., Ray, A. and Vijayakrishnan, L. (2010) Evaluation of nonradioactive cell-free cAMP assays for measuring in vitro phosphodiesterase activity. Pharmacology 85, 280-285.   DOI
61 Ferre, S., Baler, R., Bouvier, M., Caron, M. G., Devi, L. A., Durroux, T., Fuxe, K., George, S. R., Javitch, J. A., Lohse, M. J., Mackie, K., Milligan, G., Pfl eger, K. D., Pin, J. P., Volkow, N. D., Waldhoer, M., Woods, A. S. and Franco, R. (2009) Building a new conceptual framework for receptor heteromers. Nat. Chem. Biol. 5, 131-134.   DOI
62 Ferre, S., Karcz-Kubicha, M., Hope, B. T., Popoli, P., Burgueno, J., Gutierrez, M. A., Casado, V., Fuxe, K., Goldberg, S. R., Lluis, C., Franco, R. and Ciruela, F. (2002) Synergistic interaction between adenosine A2A and glutamate mGlu5 receptors: implications for striatal neuronal function. Proc. Natl. Acad. Sci. USA. 99, 11940-11945.   DOI
63 Ferre, S., Navarro, G., Casado, V., Cortes, A., Mallol, J., Canela, E. I., Lluis, C. and Franco, R. (2010) G protein-coupled receptor heteromers as new targets for drug development. Prog. Mol. Biol. Transl. Sci. 91, 41-52.   DOI
64 Fiorentini, C., Busi, C., Gorruso, E., Gotti, C., Spano, P. and Missale, C. (2008) Reciprocal regulation of dopamine D1 and D3 receptor function and traffi cking by heterodimerization. Mol. Pharmacol. 74, 59-69.   DOI
65 Calebiro, D., Nikolaev, V. O., Persani, L. and Lohse, M. J. (2010) Signaling by internalized G-protein-coupled receptors. Trends. Pharmacol. Sci. 31, 221-228.   DOI
66 Daly, C. J. and McGrath, J. C. (2003) Fluorescent ligands, antibodies, and proteins for the study of receptors. Pharmacol. Ther. 100, 101-118.   DOI
67 Chen, X. P., Yang, W., Fan, Y., Luo, J. S., Hong, K., Wang, Z., Yan, J. F., Chen, X., Lu, J. X., Benovic, J. L. and Zhou, N. M. (2010) Structural determinants in the second intracellular loop of the human cannabinoid CB1 receptor mediate selective coupling to G(s) and G(i). Br. J. Pharmacol. 161, 1817-1834.   DOI
68 Cheng, Z., Tu, C., Rodriguez, L., Chen, T. H., Dvorak, M. M., Margeta, M., Gassmann, M., Bettler, B., Shoback, D. and Chang, W. (2007) Type B gamma-aminobutyric acid receptors modulate the function of the extracellular Ca2+-sensing receptor and cell differentiation in murine growth plate chondrocytes. Endocrinology 148, 4984-4992.   DOI
69 Ciruela, F., Escriche, M., Burgueno, J., Angulo, E., Casado, V., Soloviev, M. M., Canela, E. I., Mallol, J., Chan, W. Y., Lluis, C., McIlhinney, R. A. and Franco, R. (2001) Metabotropic glutamate 1alpha and adenosine A1 receptors assemble into functionally interacting complexes. J. Biol. Chem. 276, 18345-18351.   DOI
70 Daniels, D. J., Lenard, N. R., Etienne, C. L., Law, P. Y., Roerig, S. C. and Portoghese, P. S. (2005) Opioid-induced tolerance and dependence in mice is modulated by the distance between pharmacophores in a bivalent ligand series. Proc. Natl. Acad. Sci. USA 102, 19208-19213.   DOI
71 Decaillot, F. M., Rozenfeld, R., Gupta, A. and Devi, L. A. (2008) Cell surface targeting of mu-delta opioid receptor heterodimers by RTP4. Proc. Natl. Acad. Sci. USA 105, 16045-16050.   DOI
72 Albizu, L., Cottet, M., Kralikova, M., Stoev, S., Seyer, R., Brabet, I., Roux, T., Bazin, H., Bourrier, E., Lamarque, L., Breton, C., Rives, M. L., Newman, A., Javitch, J., Trinquet, E., Manning, M., Pin, J. P., Mouillac, B. and Durroux, T. (2010) Time-resolved FRET between GPCR ligands reveals oligomers in native tissues. Nat. Chem. Biol. 6, 587-594.   DOI
73 Bhushan, R. G., Sharma, S. K., Xie, Z., Daniels, D. J. and Portoghese, P. S. (2004) A bivalent ligand (KDN-21) reveals spinal delta and kappa opioid receptors are organized as heterodimers that give rise to delta(1) and kappa(2) phenotypes. Selective targeting of delta-kappa heterodimers. J. Med. Chem. 47, 2969-2972.   DOI
74 Alfaras-Melainis, K., Gomes, I., Rozenfeld, R., Zachariou, V. and Devi, L. (2009) Modulation of opioid receptor function by protein-protein interactions. Front Biosci. 14, 3594-3607.
75 Auld, D. S., Thorne, N., Maguire, W. F. and Inglese, J. (2009) Mechanism of PTC124 activity in cell-based luciferase assays of nonsense codon suppression. Proc. Natl. Acad. Sci. USA. 106, 3585-3590.   DOI
76 Berridge, M. J. (1993) Inositol trisphosphate and calcium signalling. Nature 361, 315-325.   DOI
77 Bovolenta, S., Foti, M., Lohmer, S. and Corazza, S. (2007) Development of a Ca(2+)-activated photoprotein, Photina, and its application to high-throughput screening. J. Biomol. Screen 12, 694-704.   DOI
78 Branchek, T. A., Smith, K. E., Gerald, C. and Walker, M. W. (2000) Galanin receptor subtypes. Trends Pharmacol. Sci. 21, 109-117.   DOI
79 Burbaum, J. J. and Sigal, N. H. (1997) New technologies for high-throughput screening. Curr. Opin. Chem. Biol. 1, 72-78.   DOI
80 Cabello, N., Gandia, J., Bertarelli, D. C., Watanabe, M., Lluis, C., Franco, R., Ferre, S., Lujan, R. and Ciruela, F. (2009) Metabotropic glutamate type 5, dopamine D2 and adenosine A2a receptors form higher-order oligomers in living cells. J. Neurochem. 109, 1497-1507.   DOI
81 AbdAlla, S., Lother, H., el Massiery, A. and Quitterer, U. (2001) Increased AT (1) receptor heterodimers in preeclampsia mediate enhanced angiotensin II responsiveness. Nat. Med. 7, 1003-1009.   DOI