• Title/Summary/Keyword: lift.

Search Result 2,959, Processing Time 0.03 seconds

Fatigue Life Prediction of Medical Lift Column utilizing Finite Element Analysis (유한요소해석을 통한 의료용 리프트 칼럼의 피로수명 예측)

  • Cheon, Hee-Jun;Cho, Jin-Rae;Yang, Hee-Jun;Lee, Shi-Bok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.3
    • /
    • pp.337-342
    • /
    • 2011
  • Medical lift column controlling the vertical position while supporting heavy eccentric load should have the high fatigue strength as well as the extremely low structural deflection and vibration in order to maintain the positioning accuracy. The lift column driven by a induction motor is generally in a three-step sliding boom structure and exhibits the time-varying stress distribution according to the up-and-down motion. This study is concerned with the numerical prediction of the fatigue strength of the lift column subject to the time-varying stress caused by the up-and-down motion. The stress variation during a motion cycle is obtained by finite element analysis and the fatigue life is predicted making use of Palmgren-miner's rule and S-N curves. In order to secure the numerical analysis reliability, a 3-D FEM, model in which the detailed lift column structure and the fitting parts are fully considered, is generated and the interfaces between lift column and pads are treated by the contact condition.

Stability and parameters influence study of fully balanced hoist vertical ship lift

  • Cheng, Xionghao;Shi, Duanwei;Li, Hongxiang;Xia, Re;Zhang, Yang;Zhou, Ji
    • Structural Engineering and Mechanics
    • /
    • v.66 no.5
    • /
    • pp.583-594
    • /
    • 2018
  • A theoretical formulation based on the linearized potential theory, the Descartes' rule and the extremum optimization method is presented to calculate the critical distance of lifting points of the fully balanced hoist vertical ship lift, and to study pitching stability of the ship lift. The overturning torque of the ship chamber is proposed based on the Housner theory. A seven-free-degree dynamic model of the ship lift based on the Lagrange equation of the second kind is then established, including the ship chamber, the wire rope, the gravity counterweights and the liquid in the ship chamber. Subsequently, an eigenvalue equation is obtained with the coefficient matrix of the dynamic equations, and a key coefficient is analyzed by innovative use of the minimum optimization method for a stability criterion. Also, an extensive influence of the structural parameters contains the gravity counterweight wire rope stiffness, synchronous shaft stiffness, lifting height and hoists radius on the critical distance of lifting points is numerically analyzed. With the Runge-Kutta method, the four primary dynamical responses of the ship lift are investigated to demonstrate the accuracy/reliability of the result from the theoretical formulation. It is revealed that the critical distance of lifting points decreases with increasing the synchronous shaft stiffness, while increases with rising the other three structural parameters. Moreover, the theoretical formulation is more applicable than the previous criterions to design the layout of the fully balanced hoist vertical ship lift for the ensuring of the stability.

A Study on Development Framework of Lift-up and Procurement System for Effective Resource Management in the Building Construction (건설공사의 자재관리 효율화를 위한 조달 및 양중시스템 기반구축에 관한 연구)

  • Lee Hyung-Soo;Yoon You-Sang;Suh Sang-Wook
    • Korean Journal of Construction Engineering and Management
    • /
    • v.5 no.1 s.17
    • /
    • pp.133-139
    • /
    • 2004
  • The purpose of this study is to present an improved lift-up &procurement work flow for effective resource utilization in building construction. The current lift-up &procurement work flow has some waste factors; complicated information system, connection lack with process and decision-making delay. Therefore the study applied the value stream mapping methodology for improvement of current lift-up &procurement work flow. The main contents of the study are as follows; 1) Problems of current work flow were analyzed through current state mapping(CSM). 2) An improved work flow was suggested through future state mapping(FSM). 3) An improvement effect analysis of information system and lift-up planning was investigated. The study recommends continuous improvement of lift-up &procurement work flow and efficient management of information in building construction as a future research.

The Experimental Study on Characteristics of Valve System using Hole Type Valve Lift Sensor (밸브 거동 특성 파악을 위한 hole 센서의 적용에 관한 실험적 연구)

  • Moon, Gun-Feel;Lee, Yong-Gyu;Lee, Seong-Jin;Choi, Kyo-Nam;Jeong, Dong-Soo;Park, Sung-Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.3
    • /
    • pp.80-86
    • /
    • 2008
  • Recently, controlled auto ignition(CAI) in gasoline engines are drawing more attentions due to its extremely low level of NOx emissions and potentials in lowering the fuel consumption rate. The one of the key techniques for realizing CAI combustion in engines is the control of valve system. Since the valve linkage system with higher complexity, or even earn-less valve systems, such as electro-hydraulic and electro-magnetic system, are adopted in CAI engines, it is not easy to estimate the valve lift profile from earn profiles. Therefore new measurement techniques for valve lift in CAI engines have been tried and tested. In this paper, hole type valve lift sensor was developed and tested to check the applicability in CAI engines. The valve lifts could be obtained from the sensor signal, which depends on the distance from the sensor to magnet attached to valve. Various engine speeds, ranging from 2,000 to 6,000 rpm, and valve lifts, maximum up to 9.7 mm, were tested. It was found that the sensor output for valve lift had accuracy of 98% in comparison with the basic specifications of valve lift through improvements of sensor driving circuit.

A Development of Sensor Monitoring System for Offshore Plant Cargo Lift (해양플랜트용 Cargo Lift 센서 모니터링 시스템에 관한 연구)

  • Kim, Bae-sung;Hwang, Hun-gyu;Shin, Il-sik;Choi, Jung-sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.364-366
    • /
    • 2017
  • Unlike general ships, offshore plants require high reliability due to their long operating time at fixed positions when they are operated. Sensor-based status information is required for user and maintenance worker to ensure safety. In this paper, we propose a monitoring system for safety diagnosis and inspection of cargo lift for offshore plant. It consists of a sensor unit mounted on the cargo Lift, an embedded system measurement unit, and a monitoring unit for real-time data verification. It is based on the ship standard network IEC 61162-450 for the exchange of operating information and sensor measurement information in accordance with the upgrading and integration of equipment in maritime.

  • PDF

A Study on the Non-Contact Detection Technique of Defects Using AC Current - The Influence of Frequency and lift-off - (교류전류를 이용한 비접촉결함탐상법에 관한 연구 - 주파수 lift-off의 영향 -)

  • Kim, Hoon;Na, Eu-Gyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.1
    • /
    • pp.53-58
    • /
    • 2002
  • New nondestructive inspection (NDI) technique to detect the defect in metal was developed in which an electromagnetic field is induced in a metal by AC current flowing in the magnetic coil and the leak magnetic-flux disturbed by defects is measured using a tape-recorder head with air gap. This technique can be applied in evaluating the location and sizing of surface defects in components of the ferromagnetic body by means of the non-contacting measurement. In this paper, we have applied this technique to the evaluation of two-dimensional surface cracks in ferromagnetic metal, and also investigated the influence of the various frequencies and lift-off. Defects were detected with maximum values in the distribution of voltage and it was found that the maximum values tend to increase with the defect depth. Although the maximum values for defects are affected by the frequency and lift-off, the depth of small defects can be estimated from the linear relationship between the depth and voltage rate$(V_0/V_{ave})$.

Improvement of Lift-off Tests via Field Evaluation of Residual Load in Ground Anchor (현장 잔존긴장력 평가를 통한 리프트오프 시험 방법 개선)

  • Song, minkwon;Park, Seong-yeol;Lee, Sangrae;Cho, Wanjei
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.5
    • /
    • pp.43-51
    • /
    • 2019
  • At present, the ground anchor method is commonly applied to securing the slope stability in Korea. The ground anchor is reported to decrease in tensile load due to aging and environmental influences with time such as corrosion, relaxation, creep and so on. In Korea, the lift-off test is performed for the periodic inspection or cases when the symptoms of deterioration on anchors and the residual tensile load of the anchors is checked. However, the current lift-off test standard (MOLIT, 2010) is not fully specified in details. In this study, the factors affecting the lift-off test were investigated based on the previous research and foreign standards and lift-off tests were performed with consideration for the loading and unloading cycle, load increment method, and tensioning tendon method. Based on the results, this paper proposes improved testing and evaluation procedures of the lift-off test considering the workability and time limits in the field.

Change of Head Position and Muscle Activities of Neck During Overhead Arm Lift Test in Subjects With Forward Head Posture

  • Kim, Tae-ho;Hwang, Byoung-ha
    • Physical Therapy Korea
    • /
    • v.26 no.2
    • /
    • pp.61-68
    • /
    • 2019
  • Background: Forward head posture (FHP) is a postural alignment of the cervical vertebrae that leads to increased gravitational load on cervical segmental motions. The overhead arm lift test assesses the ability to actively dissociate and control low cervical flexion and move the shoulders through overhead flexion. Objects: The purpose of this study was to explore muscle activities in the upper trapezius (UT), serratus anterior (SA), sternocleidomastoid (SCM), and lower trapezius (LT) alongside changes in head position during the overhead arm lift test in individuals with FHP. Methods: Fifteen subjects with forward head posture and fifteen subjects with normal subjcects were enrolled in this study. The patients performed the overhead arm lift test, and muscle activities of the UT, SCM, SA, and LT were measured using surface electromyography and by evaluating changes in head position. Independent t-tests were used to detect significant differences between the two groups and Cohen's d was calculated to measure the size of the mean difference between the groups. Results: The FHP group demonstrated significantly increased muscle activity of the UT ($32.46{\pm}7.64$), SCM ($12.79{\pm}4.01$), and LT ($45.65{\pm}10.52$) and significantly decreased activity in the SA ($26.65{\pm}6.15$) than the normal group. The change in head position was significantly higher in the FHP group ($6.66{\pm}2.08$) than the normal group. Effect sizes for all parameters assessed were large between the two groups. Conclusion: The subjects with excessive FHP displayed were unable to fix their heads in position during the overhead arm lift test. The overhead arm lift test can thus be used in clinical settings to confirm control of the neck in these subjects.

Preparation of High Energy Density Lithium Anode for Thermal Batteries and Electrochemical Properties Thereof (열전지용 고에너지 밀도 리튬 음극 제조 및 이의 전기화학적 특성)

  • Im, Chae-Nam;Yu, Hye-Ryeon;Yoon, HyunKi;Cho, Jang-Hyeon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.4
    • /
    • pp.398-406
    • /
    • 2022
  • In order to increase the electrochemical performance of thermal battery anode, LIFT anode having the same weight but a larger lithium content in electrodes was fabricated by mixing lithium, iron and titanium. By applying these electrodes, a single cell and a thermal battery were prepared, and the effect of LIFT anode on electrochemical performance was evaluated. The LIFT-applied single cell presented a better cell performance than LIFe-applied single cell at 500℃ and 550℃. The discharge performance of LIFT-applied single cell, which included the operating time (787s), specific capacity (1,683 Asg-1), and electrode utilization (80.7%), was improved collectively compared to the LIFe applied single cell (736s, 1,245 As g-1, and 74.6%) at 500℃. As the discharge progressed, the internal resistance of LIFT anode decreased, because the lithium migration path was formed due to the presence of large titanium particles among iron particles. These results were analyzed in terms of the microstructure of electrode using SEM. Energy density of LIFT-applied single cell also increased by 10% to 142.1 Wh kg-1 compared to that of LIFe-applied single cell (127.4 Wh kg-1). In addition, the LIFT-applied single cell presented a stable discharge performance for 6,500s without a short circuit which could occur by molten lithium under an open circuit voltage condition with a high pressure (4 kgf cm-2). As observed in the high temperature thermal battery performance tests, the voltage and specific capacity of LIFT-applied thermal battery are superior to those of LIFe-applied thermal batteries, indicating that the energy density of LIFT-applied thermal batteries should remarkably increase.

Experimental Study on the Lift-off Behavior of Tone-excited Propane Jet Diffusion flames (음향 가진 된 프로판 확산 화염의 부상 거동에 관한 실험적 연구)

  • Kim, Seung-Gon;Park, Joeng;Kim, Tea-Kwon;Lee, Kee-Man
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.65-73
    • /
    • 2003
  • An experimental study on flame lift-off characteristics of propane jet flame highly diluted with nitrogen has been conducted introducing acoustic forcing with a tube resonant frequency. A flame stability curve is attained according to forcing strength and nozzle exit velocity for $N_2$ diluted flames. Flame lift-off behavior with forcing strength and nozzle exit velocity is globally categorized into three; a well premixed behavior caused by a collapsible mixing for large forcing strength, a coexistent behavior of well-premixed and edge flames interacting with well-organized inner fuel vortices for moderate forcing strengths, and edge flame behavior for small forcing strengths. Special focus is concentrated on the coexistent behavior of the flame base in lifted flame since this may give a hint to a possibility which the flame base behaves like a well-mixed premixed flame in highly turbulent lifted flames. It is also shown that the acoustic forcing to self-pulsating laminar lifted flame affects flame lift-off behavior considerably which is closely related to downstream flow velocity, mixture strength, effective fuel Lewis number, and flame stretch.

  • PDF