DOI QR코드

DOI QR Code

Preparation of High Energy Density Lithium Anode for Thermal Batteries and Electrochemical Properties Thereof

열전지용 고에너지 밀도 리튬 음극 제조 및 이의 전기화학적 특성

  • Im, Chae-Nam (Defense Materials/Energy Technology Center, Agency of Defense Development) ;
  • Yu, Hye-Ryeon (Defense Materials/Energy Technology Center, Agency of Defense Development) ;
  • Yoon, HyunKi (Defense Materials/Energy Technology Center, Agency of Defense Development) ;
  • Cho, Jang-Hyeon (Defense Materials/Energy Technology Center, Agency of Defense Development)
  • 임채남 (국방과학연구소 국방소재/에너지기술센터) ;
  • 유혜련 (국방과학연구소 국방소재/에너지기술센터) ;
  • 윤현기 (국방과학연구소 국방소재/에너지기술센터) ;
  • 조장현 (국방과학연구소 국방소재/에너지기술센터)
  • Received : 2022.04.08
  • Accepted : 2022.05.02
  • Published : 2022.07.01

Abstract

In order to increase the electrochemical performance of thermal battery anode, LIFT anode having the same weight but a larger lithium content in electrodes was fabricated by mixing lithium, iron and titanium. By applying these electrodes, a single cell and a thermal battery were prepared, and the effect of LIFT anode on electrochemical performance was evaluated. The LIFT-applied single cell presented a better cell performance than LIFe-applied single cell at 500℃ and 550℃. The discharge performance of LIFT-applied single cell, which included the operating time (787s), specific capacity (1,683 Asg-1), and electrode utilization (80.7%), was improved collectively compared to the LIFe applied single cell (736s, 1,245 As g-1, and 74.6%) at 500℃. As the discharge progressed, the internal resistance of LIFT anode decreased, because the lithium migration path was formed due to the presence of large titanium particles among iron particles. These results were analyzed in terms of the microstructure of electrode using SEM. Energy density of LIFT-applied single cell also increased by 10% to 142.1 Wh kg-1 compared to that of LIFe-applied single cell (127.4 Wh kg-1). In addition, the LIFT-applied single cell presented a stable discharge performance for 6,500s without a short circuit which could occur by molten lithium under an open circuit voltage condition with a high pressure (4 kgf cm-2). As observed in the high temperature thermal battery performance tests, the voltage and specific capacity of LIFT-applied thermal battery are superior to those of LIFe-applied thermal batteries, indicating that the energy density of LIFT-applied thermal batteries should remarkably increase.

Keywords

References

  1. Y. Choi, S. Cho, and Y. S. Lee, J. Ind. Eng. Chem., 20, 3584 (2014). [DOI: https://doi.org/10.1016/j.jiec.2013.12.052]
  2. Y. Choi, H. R. Yu, H. Cheong, S. Cho, and Y. S. Lee, Appl. Chem. Eng., 25, 161 (2014). [DOI: https://doi.org/10.14478/ace.2013.1123]
  3. D. E. Reisner, T. D. Xiao, H. Ye, J. Dai, R. A. Guidotti, and F. W. Reinhardt, J. New Mater. Electrochem. Syst., 2, 279 (1999).
  4. G. C. Borser and J. R. Moser, Molten Metal Anode, US patent 3,930,888 (1976).
  5. D. E. Harney, Iron-Lithium Anode for Thermal Batteries and Thermal Batteries Made Therefrom, US patent 4,221,849 (1979).
  6. C. N. Im, H. K. Yoon, T. Y. Ahn, J. S. Yeo, S. H. Ha, H. R. Yu, S. S. Baek, and J. H. Cho, Appl. Chem. Eng., 29, 696 (2018). [DOI: https://doi.org/10.14478/ace.2018.1048]
  7. C. N. Im, C. H. Choi, H. R. Yu, T. Y. Ahn, H. K. Yoon, J. S. Yeo, and J. H. Cho, Batteries Supercaps, 4, 304 (2021). [DOI: https://doi.org/10.1002/batt.202000211]
  8. C. N. Im, T. Y. Ahn, H. R. Yu, S. H. Ha, J. S. Yeo, J. H. Cho, and H. K. Yoon, J. Korean Inst. Electr. Electron. Mater. Eng., 32, 165 (2019). [DOI: https://doi.org/10.4313/JKEM.2019.32.2.165]
  9. J. Wang, H. Wang, J. Xie, A. Yang, A. Pei, C. L. Wu, F. Shi, Y. Liu, D. Lin, Y. Gong, and Y. Gui, Energy Storage Mater., 14, 345 (2018). [DOI: https://doi.org/10.1016/j.ensm.2018.05.021]
  10. S. H. Wang, J. Yue, W. Dong, T. T. Zuo, J. Y. Li, X. Liu, X. D. Zhang, L. Liu, J. L. Shi, Y. X. Yin, and Y. G. Guo, Nat. Commun., 10, 4930 (2019). [DOI: https://doi.org/10.1038/s41467-019-12938-4]
  11. P. J. Masset and R. A. Guidotti, J. Power Sources, 177, 595 (2008). [DOI: https://doi.org/10.1016/j.jpowsour.2007.11.017]
  12. D. Bernardi and J. Newman, J. Electrochem. Soc., 134, 1309 (1987). [DOI: https://doi.org/10.1149/1.2100664]