• 제목/요약/키워드: library screening

검색결과 327건 처리시간 0.029초

Optimized Serological Isolation of Lung-Cancer-associated Antigens from a Yeast Surface-expressed cDNA Library

  • Kim, Min-Soo;Choi, Hye-Young;Choi, Yong-Soo;Kim, Jhin-Gook;Kim, Yong-Sung
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권6호
    • /
    • pp.993-1001
    • /
    • 2007
  • The technique of serological analysis of antigens by recombinant cDNA expression library (SEREX) uses autologous patient sera as a screening probe to isolate tumor-associated antigens for various tumor types. Isolation of tumor-associated antigens that are specifically reactive with patient sera, but not with normal sera, is important to avoid false-positive and autoimmunogenic antigens for the cancer immunotherapy. Here, we describe a selection methodology to isolate patient sera-specific antigens from a yeast surface-expressed cDNA library constructed from 15 patient lung tissues with non-small cell lung cancer (NSCLC). Several rounds of positive selection using patient sera alone as a screening probe isolated clones exhibiting comparable reactivity with both patient and normal sera. However, the combination of negative selection with allogeneic normal sera to remove antigens reactive with normal sera and subsequent positive selection with patient sera efficiently enriched patient sera-specific antigens. Using the selection methodology described here, we isolated 3 known and 5 unknown proteins, which have not been isolated previously, but and potentially associated with NSCLC.

Phage Display Library를 이용한 Salt-Resistant Alpha-Helical 항균 펩타이드의 새로운 탐색방법 (A Novel Screening Strategy for Salt-resistant Alpha-helical Antimicrobial Peptides from a Phage Display Library)

  • 박주희;한옥경;이백락;김정현
    • 한국미생물·생명공학회지
    • /
    • 제35권4호
    • /
    • pp.278-284
    • /
    • 2007
  • 생체 염 농도에서도 항균활성을 유지할 수 있는 선형 ${\alpha}$-helical 항균 펩타이드를 M13 펩타이드 라이브러리로부터 탐색할 수 있는 새로운 방법을 개발하였다. M13의 pIII은 magainin 유도체인 MSI-344와 indolicidin과 융합된 상태에서도 파아지의 viability에 영향을 주지 않는 것으로 보아, MSI-344와 indolicidin의 대장균에 대한 독성을 중화할 수 있는 것으로 판단되며, 따라서 대장균에서 항균 펩타이드 라이브러리의 제조가 가능함을 증명하였다. 선형 항균 펩타이드의 보존된 부위를 바탕으로, 13개의 아미노산 잔기로 구성된 semi-combinatorial 항균 펩타이드 라이브러리를 M13를 이용하여 제조하였다. 제조된 파아지 라이브러리는 먼저 적혈구에 흡착시켜, 높은 용혈 역가를 가질 가능성이 있는 파아지를 제거한 후, 높은 염 농도에서 Pseudomonas aeruginosa와 Staphylococcus aureus에 흡착할 수 있는 파아지를 탐색하였다. 탐색된 펩타이드들은 염이 없는 조건에서는 비교적 낮은 항균 역가를 보였지만, P06와 S18 펩타이드의 경우, 생체 염 농도보다 높은 150 mM $Na^+$, 2 mM $Mg^{2+}$, 2 mM $Ca^{2+}$의 조건에서도 항균 역가가 영향을 받지 않았으며, 심각한 용혈 역가 또한 보이지 않았다. 본 연구에서 개발한 대상 세균에 대한 흡착능력을 이용한 탐색방법은 salt-tolerant antimicrobial peptide의 개발의 새로운 가능성을 제시하였다.

Isolation of Deletion Mutants by Reverse Genetics in Caenorhabditis elegans

  • Park, Byung-Jae;Lee, Jin ll;Lee, Jiyeon;Kim, Sunja;Choi, Kyu Yeong;Park, Chul-Seung;Ahn, Joohong
    • Animal cells and systems
    • /
    • 제5권1호
    • /
    • pp.65-69
    • /
    • 2001
  • Obtaining mutant animals is important for studying the function of a particular gene. A chemical mutagenesis was first carried out to generate mutations in C. elegans. In this study, we used ultraviolet-activated 4,5',8-trimethylpsoralen to induce small deletion mutations. A library of mutagenized worms was prepared for recovery of candidate animals and stored at $15^{\circ}C$ during screening instead of being made into a frozen stock library. In order to isolate deletion mutations in target genes, a polymerase chain reaction (PCR)-based screening method was used. As a result, two independent mutants with deletions of approximately 1.0 kb and 1.3 kb were isolated. This modified and improved reverse genetic approach was proven to be effective and practical for isolating mutant animals to study gene function at the organismal level.

  • PDF

Chemogenomics Profiling of Drug Targets of Peptidoglycan Biosynthesis Pathway in Leptospira interrogans by Virtual Screening Approaches

  • Bhattacharjee, Biplab;Simon, Rose Mary;Gangadharaiah, Chaithra;Karunakar, Prashantha
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권6호
    • /
    • pp.779-784
    • /
    • 2013
  • Leptospirosis is a worldwide zoonosis of global concern caused by Leptospira interrogans. The availability of ligand libraries has facilitated the search for novel drug targets using chemogenomics approaches, compared with the traditional method of drug discovery, which is time consuming and yields few leads with little intracellular information for guiding target selection. Recent subtractive genomics studies have revealed the putative drug targets in peptidoglycan biosynthesis pathways in Leptospira interrogans. Aligand library for the murD ligase enzyme in the peptidoglycan pathway has also been identified. Our approach in this research involves screening of the pre-existing ligand library of murD with related protein family members in the putative drug target assembly in the peptidoglycan biosynthesis pathway. A chemogenomics approach has been implemented here, which involves screening of known ligands of a protein family having analogous domain architecture for identification of leads for existing druggable protein family members. By means of this approach, one murC and one murF inhibitor were identified, providing a platform for developing an anti-leptospirosis drug targeting the peptidoglycan biosynthesis pathway. Given that the peptidoglycan biosynthesis pathway is exclusive to bacteria, the in silico identified mur ligase inhibitors are expected to be broad-spectrum Gram-negative inhibitors if synthesized and tested in in vitro and in vivo assays.

Repeated Random Mutagenesis of ${\alpha}$-Amylase from Bacillus licheniformis for Improved pH Performance

  • Priyadharshini, Ramachandran;Manoharan, Shankar;Hemalatha, Devaraj;Gunasekaran, Paramasamy
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권12호
    • /
    • pp.1696-1701
    • /
    • 2010
  • The ${\alpha}$-amylases activity was improved by random mutagenesis and screening. A region comprising residues from the position 34-281 was randomly mutated in B. licheniformis ${\alpha}$-amylase (AmyL), and the library with mutations ranging from low, medium, and high frequencies was generated. The library was screened using an effective liquid-phase screening method to isolate mutants with an altered pH profile. The sequencing of improved variants indicated 2-5 amino acid changes. Among them, mutant TP8H5 showed an altered pH profile as compared with that of wild type. The sequencing of variant TP8H5 indicated 2 amino acid changes, Ile157Ser and Trp193Arg, which were located in the solvent accessible flexible loop region in domain B.

Synthesis of 2-Thio-4-aminopyrimidine Derivatives as Anti-cancer Agent

  • Lee, Sang-Hyo;Lee, Jin-Ho
    • 대한의생명과학회지
    • /
    • 제15권2호
    • /
    • pp.105-112
    • /
    • 2009
  • The screening of the anti-cancer activity of the chemical library provided 2-thio-4-aminopyrimidine as the initial hit. The confirmation of structure and biological effect of hit was performed by synthesis and biological evaluation. The optimization of hit was performed by derivatization of substituents while keeping the core structure. The evaluation of growth inhibitory activity was carried out using SRB assay against 6 human cancer cell lines and human fibroblast. The growth inhibitory activity of compounds showed substituent dependency and more than 5 compounds showed complete growth inhibition of cancer cell lines at 10 ${\mu}M$ concentration. Chemical library screening followed by synthetic modification provided possibility that 2-thio-4-aminopyrimidine can be used as a new scaffold for the development of anti-cancer agent.

  • PDF

Property-based Design of Ion-Channel-Targeted Library

  • Ahn, Ji-Young;Nam, Ky-Youb;Chang, Byung-Ha;Yoon, Jeong-Hyeok;Cho, Seung-Joo;Koh, Hun-Yeong;No, Kyoung-Tai
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2005년도 BIOINFO 2005
    • /
    • pp.134-138
    • /
    • 2005
  • The design of ion channel targeted library is a valuable methodology that can aid in the selection and prioritization of potential ion channel-likeness for ion-channel-targeted bio-screening from large commercial available chemical pool. The differences of property profiling between the 93 ion-channel active compounds from MDDR and CMC database and the ACDSC compounds were classified by suitable descriptors calculated with preADME software. Through the PCA, clustering, and similarity analysis, the compounds capable of ion channel activity were defined in ACDSC compounds pool. The designed library showed a tendency to follow the property profile of ion-channel active compounds and can be implemented with great time and economical efficiencies of ligand-based drug design or virtual high throughput screening from an enormous small molecule space.

  • PDF

Functional Metagenome Mining of Soil for a Novel Gentamicin Resistance Gene

  • Im, Hyunjoo;Kim, Kyung Mo;Lee, Sang-Heon;Ryu, Choong-Min
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권3호
    • /
    • pp.521-529
    • /
    • 2016
  • Extensive use of antibiotics over recent decades has led to bacterial resistance against antibiotics, including gentamicin, one of the most effective aminoglycosides. The emergence of resistance is problematic for hospitals, since gentamicin is an important broad-spectrum antibiotic for the control of bacterial pathogens in the clinic. Previous study to identify gentamicin resistance genes from environmental samples have been conducted using culture-dependent screening methods. To overcome these limitations, we employed a metagenome-based culture-independent protocol to identify gentamicin resistance genes. Through functional screening of metagenome libraries derived from soil samples, a fosmid clone was selected as it conferred strong gentamicin resistance. To identify a specific functioning gene conferring gentamicin resistance from a selected fosmid clone (35-40 kb), a shot-gun library was constructed and four shot-gun clones (2-3 kb) were selected. Further characterization of these clones revealed that they contained sequences similar to that of the RNA ligase, T4 rnlA that is known as a toxin gene. The overexpression of the rnlA-like gene in Escherichia coli increased gentamicin resistance, indicating that this toxin gene modulates this trait. The results of our metagenome library analysis suggest that the rnlA-like gene may represent a new class of gentamicin resistance genes in pathogenic bacteria. In addition, we demonstrate that the soil metagenome can provide an important resource for the identification of antibiotic resistance genes, which are valuable molecular targets in efforts to overcome antibiotic resistance.

Combinatorial Solid Phase Peptide Synthesis and Bioassays

  • Shin, Dong-Sik;Kim, Do-Hyun;Chung, Woo-Jae;Lee, Yoon-Sik
    • BMB Reports
    • /
    • 제38권5호
    • /
    • pp.517-525
    • /
    • 2005
  • Solid phase peptide synthesis method, which was introduced by Merrifield in 1963, has spawned the concept of combinatorial chemistry. In this review, we summarize the present technologies of solid phase peptide synthesis (SPPS) that are related to combinatorial chemistry. The conventional methods of peptide library synthesis on polymer support are parallel synthesis, split and mix synthesis and reagent mixture synthesis. Combining surface chemistry with the recent technology of microelectronic semiconductor fabrication system, the peptide microarray synthesis methods on a planar solid support are developed, which leads to spatially addressable peptide library. There are two kinds of peptide microarray synthesis methodologies: pre-synthesized peptide immobilization onto a glass or membrane substrate and in situ peptide synthesis by a photolithography or the SPOT method. This review also discusses the application of peptide libraries for high-throughput bioassays, for example, peptide ligand screening for antibody or cell signaling, enzyme substrate and inhibitor screening as well as other applications.