References
- Arnold, F. H. and A. A. Volkov. 1999. Directed evolution of biocatalysts. Curr. Opin. Chemi Biol. 3: 54-59. https://doi.org/10.1016/S1367-5931(99)80010-6
- Arnold, K. L., J. K. Bordoli, and T. Schwede. 2006. The SWISS-MODEL Workspace: A Web-based environment for protein structure homology modelling. Bioinformatics 22: 195-201. https://doi.org/10.1093/bioinformatics/bti770
-
Bessler, C., J. Schmitt, K. H. Maurer, and R. Schmid. 2003. Directed evolution of a bacterial
$\alpha$ -amylase: Towards enhanced pH-performance and higher specific activity. Prot. Sci. 12: 2141-2149. -
Bisgaard-Frantzen, H., A. Svendsen, B. Norman, S. Pedersen, S. Kjærulff, H. Outtrup, and T. V. Borchert. 1999. Development of industrially important
$\alpha$ -amylases. J. Appl. Glycosci. 46: 199-206. https://doi.org/10.5458/jag.46.199 - Cadwell, R. C. and G. F. Joyce.1994. Mutagenic PCR. PCR Methods Appl. 3: 136-140. https://doi.org/10.1101/gr.3.6.S136
-
Conrad, B., V. Hoang, A. Polley, and J. Hofemeister. 1995. Hybrid Bacillus amyloliquefaciens
${\times}$ Bacillus licheniformis alpha-amylases. Construction, properties and sequence determinants. Eur. J. Biochem. 230: 481-490. - DeLano, W. L. 2003. PyMOL Reference Manual. DeLano Scientific LLC, San Carlos, CA.
- Demirjian, D. C., F. Moris-Varas, and C. S. Cassidy. 2001. Enzymes from extremophiles. Curr. Opin. Chem. Biol. 5: 144-151. https://doi.org/10.1016/S1367-5931(00)00183-6
- Emond, S., G. Potocki-Veronese, P. Mondon, K. Bouayadi, H. Kharrat, P. Monsan, and M. Remaud-Simeon. 2007. Optimized and automated protocols for high-throughput screening of amylosucrase libraries. J. Biomol. Screen. 12: 715-723. https://doi.org/10.1177/1087057107301978
- Fushinobu, S., K. Ito, M. Konno, T. Wakagi, and H. Matsuzawa. 1998. Crystallographic and mutational analyses of an extremely acidophilic and acid-stable xylanase: Biased distribution of acidic residues and importance of Asp37 for catalysis at low pH. Prot. Eng. 11: 1121-1128. https://doi.org/10.1093/protein/11.12.1121
- Hagihara, H., K. Igarashi, Y. Hayashi, K. Endo, K. Ikawa-Kitayama, K .Ozaki, S. Kawai, and S. Ito. 2001. Novel alpha-amylase that is highly resistant to chelating reagents and chemical oxidants from the alkaliphilic Bacillus isolate KSM-K38. Appl. Environ. Microbiol. 67: 1744-1750. https://doi.org/10.1128/AEM.67.4.1744-1750.2001
-
Igarashi, K., Y. Hatada, K. Ikawa, H. Araki, T. Ozawa, T. Kobayashi, K. Ozaki, and S. Ito. 1998. Improved thermostability of a Bacillus
$\alpha$ -amylase by deletion of an arginine-glycine residue is caused by enhanced calcium binding. Biochem. Biophys. Res. Commun. 248: 372-377. https://doi.org/10.1006/bbrc.1998.8970 - Jones, A., M. Lamsa, T. P. Frandsen, T. Spendler, P. Harris, A. Sloma, F. Xu, J. B. Nielsen, and J. R. Cherry. 2008. Directed evolution of a maltogenic alpha-amylase from Bacillus sp. TS-25. J. Biotechnol. 134: 325-333. https://doi.org/10.1016/j.jbiotec.2008.01.016
-
Joyet, P., N. Declerck, and C. Gaillardin. 1992. Hyperthermostable variants of a highly thermostable
$\alpha$ -amylase. Biotechnology 10: 1579-1583. https://doi.org/10.1038/nbt1292-1579 - Keohavong, P. and W. G. Thilly. 1989. Fidelity of DNA polymerases in DNA amplification assay: Denaturing gradient gel electrophoresis. Proc. Natl. Acad. Sci. U.S.A. 86: 9253-9257. https://doi.org/10.1073/pnas.86.23.9253
- Kim, Y. W., J. H. Choi, J. W. Kim, C. Park, J. W. Kim, H. Cha, et al. 2003. Directed evolution of Thermus maltogenic amylase toward enhanced thermal resistance. Appl. Environ. Microbiol. 69: 4866-4874. https://doi.org/10.1128/AEM.69.8.4866-4874.2003
- Lee, S., Y. Mouri, M. Minoda, H. Oneda, and K. Inouye. 2006. Comparison of the wild-type-amylase and its variant enzymes in Bacillus amyloliquefaciens in activity and thermal stability, and insights into engineering the thermal stability of Bacillusamylase. J. Biochem. 139: 1007-1015. https://doi.org/10.1093/jb/mvj107
- Miller, L. H. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 246-248.
-
Nielsen, J., E. Torben, V. Borchert, and V. Gerrit. 2001. The determinants of
$\alpha$ -amylase pH-activity profiles. Prot. Eng. 14: 505-512. https://doi.org/10.1093/protein/14.7.505 -
Priyadharshini, R. and P. Gunasekaran. 2007. Site-directed mutagenesis of the calcium binding site of
$\alpha$ -amylase of Bacillus licheniformis. Biotech. Lett. 29: 1493-1499. https://doi.org/10.1007/s10529-007-9428-0 - Richardson, T. H., T. Xuqiu, F. Gerhard, C. Walter, C. Mark, L. David, et al. 2002. A novel, high performance enzyme for starch liquefaction. J. Biol. Chem. 277: 26501-26507. https://doi.org/10.1074/jbc.M203183200
- Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York.
- Schafer, K., U. Magnusson, F. Scheffel, A. Schiefner, M. O. Sandgren, K. Diederichs, et al. 2004. X-Ray structures of the maltose-maltodextrin-binding protein of the thermoacidophilic bacterium Alicyclobacillus acidocaldarius provide insight into acid stability of proteins. J. Mol. Biol. 335: 261-274. https://doi.org/10.1016/j.jmb.2003.10.042
- Schwede, T., J. Kopp, N. Guex, and M. C. Peitsch. 2003. SWISS-MODEL - An automated protein homology-modeling server. Nucl. Acids Res. 31: 3381-3385. https://doi.org/10.1093/nar/gkg520
- Shankar, M., R. Priyadharshini, and P. Gunasekaran. 2009. Quantitative digital image analysis of chromogenic assays for high throughput screening of alpha-amylase mutant libraries. Biotech. Lett. 31: 1197-1201. https://doi.org/10.1007/s10529-009-9999-z
- Sheryl, B., P. Rubin, and H. Zhao. 2006. Recent advances in biocatalysis by directed enzyme evolution. Combin. Chem. High Through. Screen. 7: 480-485.
- Suzuki, Y., N. Ito, T. Yuuki, H. Yamagata, and S. Udaka. 1989. Amino acid residues stabilizing a Bacillus alpha-amylase against irreversible thermoinactivation. J. Biol. Chem. 15: 18933-18938.
-
Van der Maarel, M. J. E. C, B. van der Veen, J. C. M. Uitdehaag, H. Leemhuis, and L. Dijkhuizen. 2002. Properties and applications of starch converting enzymes of the
$\alpha$ -amylase family. J. Biotechnol. 94: 137-155. https://doi.org/10.1016/S0168-1656(01)00407-2 - Voigt, C. A., S. L. Mayo, F. H. Arnold, and Z. G. Wang. 2001. Computational method to reduce the search space for directed protein evolution. Proc. Natl. Acad. Sci. U.S.A. 98: 3778-3783. https://doi.org/10.1073/pnas.051614498
-
Wong, D. W. S., S. B. Batt, C. C. Lee, and G. H. Robertson. 1999. High-activity barley
$\alpha$ -amylase by directed evolution. Prot. J. 23: 453-460.
Cited by
- A Highly Active Alpha Amylase from Bacillus licheniformis: Directed Evolution, Enzyme Characterization and Structural Analysis vol.24, pp.7, 2010, https://doi.org/10.4014/jmb.1402.02004
- Characterization of novel insect associated peptidases for hydrolysis of food proteins vol.240, pp.2, 2010, https://doi.org/10.1007/s00217-014-2342-5
- An Insight Into Ameliorating Production, Catalytic Efficiency, Thermostability and Starch Saccharification of Acid-Stable α-Amylases From Acidophiles vol.6, pp.None, 2010, https://doi.org/10.3389/fbioe.2018.00125