Browse > Article
http://dx.doi.org/10.4014/jmb.1511.11053

Functional Metagenome Mining of Soil for a Novel Gentamicin Resistance Gene  

Im, Hyunjoo (Molecular Phytobacteriology Laboratory, KRIBB)
Kim, Kyung Mo (Microbial Resource Center, KRIBB)
Lee, Sang-Heon (Microbial Resource Center, KRIBB)
Ryu, Choong-Min (Molecular Phytobacteriology Laboratory, KRIBB)
Publication Information
Journal of Microbiology and Biotechnology / v.26, no.3, 2016 , pp. 521-529 More about this Journal
Abstract
Extensive use of antibiotics over recent decades has led to bacterial resistance against antibiotics, including gentamicin, one of the most effective aminoglycosides. The emergence of resistance is problematic for hospitals, since gentamicin is an important broad-spectrum antibiotic for the control of bacterial pathogens in the clinic. Previous study to identify gentamicin resistance genes from environmental samples have been conducted using culture-dependent screening methods. To overcome these limitations, we employed a metagenome-based culture-independent protocol to identify gentamicin resistance genes. Through functional screening of metagenome libraries derived from soil samples, a fosmid clone was selected as it conferred strong gentamicin resistance. To identify a specific functioning gene conferring gentamicin resistance from a selected fosmid clone (35-40 kb), a shot-gun library was constructed and four shot-gun clones (2-3 kb) were selected. Further characterization of these clones revealed that they contained sequences similar to that of the RNA ligase, T4 rnlA that is known as a toxin gene. The overexpression of the rnlA-like gene in Escherichia coli increased gentamicin resistance, indicating that this toxin gene modulates this trait. The results of our metagenome library analysis suggest that the rnlA-like gene may represent a new class of gentamicin resistance genes in pathogenic bacteria. In addition, we demonstrate that the soil metagenome can provide an important resource for the identification of antibiotic resistance genes, which are valuable molecular targets in efforts to overcome antibiotic resistance.
Keywords
Gentamicin; RnlA; metagenome; shot-gun library; antibiotic resistance;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Krogh A, Larsson B, von Heijne G, Sonnhammer EL. 2001. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305: 567-580.   DOI
2 Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, et al. 2009. Circos: an information aesthetic for comparative genomics. Genome Res. 19: 1639-1645.   DOI
3 Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW. 2007. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 35: 3100-3108.   DOI
4 Lee MH, Lee CH, Oh TK, Song JK, Yoon JH. 2006. Isolation and characterization of a novel lipase from a metagenomic library of tidal flat sediments: evidence for a new family of bacterial lipases. Appl. Environ. Microbiol. 72: 7406-7409.   DOI
5 Lee MH, Oh KH, Kang CH, Kim JH, Oh TK, Ryu CM, Yoon JH. 2012. Novel metagenome-derived, cold-adapted alkaline phospholipase with superior lipase activity as an intermediate between phospholipase and lipase. Appl. Environ. Microbiol. 78: 4959-4966.   DOI
6 Lowe TM, Eddy SR. 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25: 955-964.   DOI
7 Martin J, Barras M, Yui N, Kirkpatrick C, Kubler P, Norris R. 2012. Gentamicin monitoring practices in teaching hospitals - time to undertake the necessary randomised controlled trial. J. Clin. Toxicol. 2: 146.1-146.5.
8 McHardy AC, Martin HG, Tsirigos A, Hugenholtz P, Rigoutsos I. 2007. Accurate phylogenetic classification of variable-length DNA fragments. Nat. Methods 4: 63-72.   DOI
9 Otsuka Y, Ueno H, Yonesaki T. 2003. Escherichia coli endoribonucleases involved in cleavage of bacteriophage T4 mRNAs. J. Bacteriol. 185: 983-990.   DOI
10 Moyed HS, Bertrand KP. 1983. hipA, a newly recognized gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis. J. Bacteriol. 155: 768-775.
11 Mullany P. 2014. Functional metagenomics for the investigation of antibiotic resistance. Virulence 5: 443-447.   DOI
12 Nagai F, Watanabe Y, Morotomi M. 2010. Slackia piriformis sp. nov. and Collinsella tanakaei sp. nov., new members of the family Coriobacteriaceae, isolated from human faeces. Int. J. Syst. Evol. Microbiol. 60: 2639-2646.   DOI
13 Otsuka Y, Yonesaki T. 2012. Dmd of bacteriophage T4 functions as an antitoxin against Escherichia coli LsoA and RnlA toxins. Mol. Microbiol. 83: 669-681.   DOI
14 Petersen TN, Brunak S, von Heijne G, Nielsen H. 2011. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods 8: 785-786.   DOI
15 Popowska M, Rzeczycka M, Miernik A, Krawczyk-Balska A, Walsh F, Duffy B. 2012. Influence of soil use on prevalence of tetracycline, streptomycin, and erythromycin resistance and associated resistance genes. Antimicrob. Agents Chemother. 56: 1434-1443.   DOI
16 Pukall R, Lapidus A, Nolan M, Copeland A, Glavina Del Rio T, Lucas S, et al. 2009. Complete genome sequence of Slackia heliotrinireducens type strain (RHS 1). Stand. Genomic Sci. 1: 234-241.   DOI
17 Rath S, Sahu MC, Dubey D, Debata NK, Padhy RN. 2011. Which value should be used as the lethal concentration 50 (LC(50)) with bacteria? Interdiscipl. Sci. 3: 138-143.   DOI
18 Schumacher MA, Piro KM, Xu W, Hansen S, Lewis K, Brennan RG. 2009. Molecular mechanisms of HipA-mediated multidrug tolerance and its neutralization by HipB. Science 323: 396-401.   DOI
19 Sambrook J, Russell DW. 2006. Fragmentation of DNA by sonication. CSH Protoc. 2006. DOI: 10.1101/pdb.prot4538.   DOI
20 Riesenfeld CS, Goodman RM, Handelsman J. 2004. Uncultured soil bacteria are a reservoir of new antibiotic resistance genes. Environ. Microbiol. 6: 981-989.   DOI
21 Schmieder R, Edwards R. 2011. Insights into antibiotic resistance through metagenomic approaches. Future Microbiol. 7: 73-89.   DOI
22 Shakil S, Khan R, Zarrilli R, Khan AU. 2008. Aminoglycosides versus bacteria - a description of the action, resistance mechanism, and nosocomial battleground. J. Biomed. Sci. 15: 5-14.   DOI
23 Shaw KJ, Rather PN, Hare RS, Miller GH. 1993. Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbiol. Rev. 57: 138-163.
24 Tao W, Lee MH, Wu J, Kim NH, Kim JC, Chung E, et al. 2012. Inactivation of chloramphenicol and florfenicol by a novel chloramphenicol hydrolase. Appl. Environ. Microbiol. 78: 6295-6301.   DOI
25 Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, et al. 2003. The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4: 41.   DOI
26 Tringe SG, von Mering C, Kobayashi A, Salamov AA, Chen K, Chang HW, et al. 2005. Comparative metagenomics of microbial communities. Science 308: 554-557.   DOI
27 Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, et al. 2004. Environmental genome shotgun sequencing of the Sargasso Sea. Science 304: 66-74.   DOI
28 Wiegand I, Hilpert K, Hancock RE. 2008. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 3: 163-175.   DOI
29 Wu CH, Apweiler R, Bairoch A, Natale DA, Barker WC, Boeckmann B, et al. 2006. The Universal Protein Resource (UniProt): an expanding universe of protein information. Nucleic Acids Res. 34: D187-D191.   DOI
30 Wade WG, Downes J, Dymock D, Hiom SJ, Weightman AJ, Dewhirst FE, et al. 1999. The family Coriobacteriaceae: reclassification of Eubacterium exiguum (Poco et al. 1996) and Peptostreptococcus heliotrinireducens (Lanigan 1976) as Slackia exigua gen. nov., comb. nov. and Slackia heliotrinireducens gen. nov., comb. nov., and Eubacterium lentum (Prevot 1938) as Eggerthella lenta gen. nov., comb. nov. Int. J. Syst. Bacteriol. 49: 595-600.   DOI
31 Williams JJ, Hergenrother PJ. 2012. Artificial activation of toxin-antitoxin systems as an antibacterial strategy. Trends Microbiol. 20: 291-298.   DOI
32 Chistoserdovai L. 2010. Functional metagenomics: recent advances and future challenges. Biotechnol. Genet. Eng. Rev. 26: 335-352.   DOI
33 Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S, et al. 2004. The Pfam protein families database. Nucleic Acids Res. 32: D138-D141.   DOI
34 Allen HK, Donato J, Wang HH, Cloud-Hansen KA, Davies J, Handelsman J. 2010. Call of the wild: antibiotic resistance genes in natural environments. Microbiol. Rev. 8: 251-259.
35 Allen HK, Moe LA, Rodbumrer J, Gaarder A, Handelsman J. 2009. Functional metagenomics reveals diverse beta-lactamases in a remote Alaskan soil. ISME J. 3: 243-251.   DOI
36 Amann RI, Ludwig W, Schleifer KH. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59: 143-169.
37 Bland C, Ramsey TL, Sabree F, Lowe M, Brown K, Kyrpides NC, Hugenholtz P. 2007. CRISPR recognition tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats. BMC Bioinformatics 8: 209.   DOI
38 Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. 2005. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21: 3674-3676.   DOI
39 D’Costa VM, Griffiths E, Wright GD. 2007. Expanding the soil antibiotic resistome: exploring environmental diversity. Curr. Opin. Microbiol. 10: 481-489.   DOI
40 Davies J, Wright GD. 1997. Bacterial resistance to aminoglycoside antibiotics. Trends Microbiol. 5: 234-240.   DOI
41 Demanche S, Sanguin H, Poté J, Navarro E, Bernillon D, Mavingui P, et al. 2008. Antibiotic-resistant soil bacteria in transgenic plant fields. Proc. Natl. Acad. Sci. USA 105: 3957-3962.   DOI
42 Gad GF, Mohamed HA, Ashour HM. 2011. Aminoglycoside resistance rates, phenotypes, and mechanisms of gram-negative bacteria from infected patients in upper Egypt. PLoS One 6: e17224.   DOI
43 Gerdes K, Christensen SK, Lobner-Olesen A. 2005. Prokaryotic toxin-antitoxin stress response loci. Microbiol. Rev. 3: 371-382.
44 Donato JJ, Moe LA, Converse BJ, Smart KD, Berklein FC, McManus PS, Handelsman J. 2010. Metagenomic analysis of apple orchard soil reveals antibiotic resistance genes encoding predicted bifunctional proteins. Appl. Environ. Microbiol. 76: 4396-4401.   DOI
45 Finney DJ. 1947. Probit Analysis; A Statistical Treatment of the Sigmoid Response Curve. Cambridge University Press.
46 Forsberg KJ, Reyes A, Wang B, Selleck EM, Sommer MO, Dantas G. 2012. The shared antibiotic resistome of soil bacteria and human pathogens. Science 337: 1107-1111.   DOI
47 Griffiths-Jones S, Moxon S, Marshall M, Khanna A, Eddy SR, Bateman A. 2005. Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res. 33: D121-D124.   DOI
48 Henriques I, Moura A, Alves A, Saavedra MJ, Correia A. 2006. Analysing diversity among beta-lactamase encoding genes in aquatic environments. FEMS Microbiol. Ecol. 56: 418-429.   DOI
49 Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. 2010. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11: 119.   DOI
50 Kim KS, Rowlinson MC, Bennion R, Liu C, Talan D, Summanen P, Finegold SM. 2010. Characterization of Slackia exigua isolated from human wound infections, including abscesses of intestinal origin. J. Clin. Microbiol. 48: 1070-1075.   DOI
51 Lang KS, Anderson JM, Schwarz S, Williamson L, Handelsman J, Singer RS. 2010. Novel florfenicol and chloramphenicol resistance gene discovered in Alaskan soil by using functional metagenomics. Appl. Environ. Microbiol. 76: 5321-5326.   DOI