Browse > Article
http://dx.doi.org/10.4014/jmb.1206.06050

Chemogenomics Profiling of Drug Targets of Peptidoglycan Biosynthesis Pathway in Leptospira interrogans by Virtual Screening Approaches  

Bhattacharjee, Biplab (Department of Biotechnology, PES Institute of Technology)
Simon, Rose Mary (Crucible of Research and Innovation (CORI Lab), PES Institute of Technology)
Gangadharaiah, Chaithra (Crucible of Research and Innovation (CORI Lab), PES Institute of Technology)
Karunakar, Prashantha (Department of Biotechnology, PES Institute of Technology)
Publication Information
Journal of Microbiology and Biotechnology / v.23, no.6, 2013 , pp. 779-784 More about this Journal
Abstract
Leptospirosis is a worldwide zoonosis of global concern caused by Leptospira interrogans. The availability of ligand libraries has facilitated the search for novel drug targets using chemogenomics approaches, compared with the traditional method of drug discovery, which is time consuming and yields few leads with little intracellular information for guiding target selection. Recent subtractive genomics studies have revealed the putative drug targets in peptidoglycan biosynthesis pathways in Leptospira interrogans. Aligand library for the murD ligase enzyme in the peptidoglycan pathway has also been identified. Our approach in this research involves screening of the pre-existing ligand library of murD with related protein family members in the putative drug target assembly in the peptidoglycan biosynthesis pathway. A chemogenomics approach has been implemented here, which involves screening of known ligands of a protein family having analogous domain architecture for identification of leads for existing druggable protein family members. By means of this approach, one murC and one murF inhibitor were identified, providing a platform for developing an anti-leptospirosis drug targeting the peptidoglycan biosynthesis pathway. Given that the peptidoglycan biosynthesis pathway is exclusive to bacteria, the in silico identified mur ligase inhibitors are expected to be broad-spectrum Gram-negative inhibitors if synthesized and tested in in vitro and in vivo assays.
Keywords
Chemogenomics; antimicrobial; Leptospira interrogans; peptidoglycan biosynthesis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bharti, A. R., J. E. Nally, J. N. Ricaldi, M. A. Matthias, M. M. Diaz, M. A. Lovett, et al. 2003. Leptospirosis: A zoonotic disease of global importance. Lancet Infect. Dis. 3: 757-771.   DOI   ScienceOn
2 Amineni, U., D. Pradhan, and H. Marisetty. 2010. In silico identification of common putative drug targets in Leptospira interrogans. J. Chem. Biol. 14: 165-173.
3 Amineni, U., D. Pradhan, and H. Marisetty. 2010. Virtual screening for potential inhibitors of homology modeled Leptospira interrogans MurD ligase. J. Chem. Biol. 3: 3175-3187.
4 Barreteau, H., A. Kovac, A. Boniface, M. Sova, S. Gobec, and D. Blanot. 2008. Cytoplasmic steps of peptidoglycan biosynthesis. FEMS Microbiol. Rev. 32: 168-207.   DOI   ScienceOn
5 Bleicher, K. H. 2002. Chemogenomics: Bridging a drug discovery gap. Curr. Med. Chem. 9: 2077-2084   DOI   ScienceOn
6 Chopra, I., C. Schofield, M. Everett, A. O'Neill, K. Miller, M. Wilcox, et al. 2008. Treatment of health-care-associated infections caused by Gram-negative bacteria: A consensus statement. Lancet Infect. Dis. 8: 133-139.   DOI   ScienceOn
7 Kanehisa, M. and S. Goto. 2000. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 1: 27-30.
8 Colovos, C. and T. O. Yeates. 1993. Verification of protein structures: Patterns of non bonded atomic interactions. Protein Sci. 2: 1511-1519.   DOI   ScienceOn
9 Gupta, S. K., M. Smurzynski, N. Franceschini, R. J. Bosch, L. A. Szczech, and R. C. Kalayjian. 2009. AIDS clinical trials group longitudinal linked randomized trials study team. The effects of HIV type-1 viral suppression and non-viral factors on quantitative proteinuria in the highly active antiretroviral therapy era. Antivir. Ther. 14: 543-549.
10 Hooft, R. W., G. Vriend, C. Sander, and E. E. Abola. 1996. Errors in protein structures. Nature. 381: 272.   DOI
11 Kelley, L. A. and M. J. Sternberg. 2009. Protein structure prediction on the Web: A case study using the Phyre server. Nat. Protoc. 4: 363-371.   DOI   ScienceOn
12 Laskowski, R. A., J. A. Rullmannn, M. W. Macarthur, R. Kaptein, and J. M. Hornton. 1996. AQUA and PROCHECKNMR: Programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 8: 477-486.
13 Morris, G. M., R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew, D. S. Goodsell, and A. J. Olson. 2009. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 30: 2785-2791.   DOI   ScienceOn
14 Trueba, G., S. Zapata, K. Madrid, P. Cullen, and D. Haake. 2004. Cell aggregation: A mechanism of pathogenic Leptospira to survive in fresh water. Int. Microbiol. 7: 35-40.
15 Van Heijenoort, J. 2001. Recent advances in the formation of the bacterial peptidoglycan monomer unit. Nat. Prod. Rep. 18: 503-519.   DOI   ScienceOn
16 Sarangi, A. N., R. Aggarwal., Q. Rahman, and N. Trivedi. 2009. Subtractive genomics approach for in silico identification and characterization of novel drug targets in neisseria Meningitides serogroup B. J. Comp. Sci. Syst. Biol. 2: 255-258.   DOI
17 Vollmer, W., D. Blanot, and M. A. De Pedro. 2008. Peptidoglycan structure and architecture. FEMS Microbiol. Rev. 32: 149-167.   DOI   ScienceOn
18 Wang, Z., L. Jin, and A. Wegrzyn. 2007. Leptospirosis vaccines. Microb. Cell Fact. 11: 6-39.
19 Wiederstein, M. and M. J. Sippl, 2007. ProSA-Web: Interactive Web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 35 (Web Server issue): W407-10
20 Smith, C. A. 2006. Structure, function and dynamics in the mur family of bacterial cell wall ligases. J. Mol. Biol. 362: 640-655.   DOI   ScienceOn