Browse > Article

A Novel Screening Strategy for Salt-resistant Alpha-helical Antimicrobial Peptides from a Phage Display Library  

Park, Ju-Hee (Indang Institute of Molecular Biology, Inje University)
Han, Ok-Kyung (Indang Institute of Molecular Biology, Inje University)
Lee, Baek-Rak (School of Biotechnology and Biomedical Science, Inje University)
Kim, Jeong-Hyun (Indang Institute of Molecular Biology, Inje University)
Publication Information
Microbiology and Biotechnology Letters / v.35, no.4, 2007 , pp. 278-284 More about this Journal
Abstract
A novel screening strategy for salt-resistant antimicrobial peptides from a M13 peptide library was developed. Fusion of MSI-344, a magainin derivative and indolicidin to pIII coat proteins did not significantly affect viability of the recombinant phages, which indicated that the pIII could neutralize toxicity of the antimicrobial peptides and therefore it is possible to construct antimicrobial peptide library in Escherichia coli. On the basis of the conserved sequence of ${\alpha}$-helical antimicrobial peptides, a semi-combinatorial peptide library was constructed in which the peptides were displayed by pIII. To remove hemolytic activity from the library, the phages bound to red blood cells were removed, and the subtracted phage library was screened for binding to target bacteria Pseudomonas aeruginosa and Staphylococcus aureus under high salt concentrations. The screened peptides showed relatively low antimicrobial activity against the target bacteria. However, antimicrobial activities of the screened peptides P06 and S18 were not affected by the cation concentrations of 150 mM $Na^+$, 2 mM $Mg^{2+}$ and 2 mM $Ca^{2+}$ without significant hemolytic activity. This screening strategy that is based on binding capacity to target cells provides new potential to develop salt-tolerant antimicrobial peptides.
Keywords
Antimicrobial peptides; salt-resistance; phage display library;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Friedrich, C., M. G. Scott, N. Karunaratne, H. Yan, and R. E. Hancock. 1999. Salt-resistant alpha-helical cationic antimicrobial peptides. Antimicrob. Agents Chemother. 43: 1542-1548   PUBMED
2 Shin, S. Y., S. T. Yang, E. J. Park, S. H. Eom, W. K. Song, Y. Kim, K. S. Hahm, and J. I. Kim. 2002. Salt Resistance and Synergistic Effect with Vancomycin of alpha-Helical Antimicrobial Peptide P18. Biochem. Biophys. Res. Commun. 290: 558-562   DOI   ScienceOn
3 Tomita, T., S. Hitomi, T. Nagase, H. Matsui, T. Matsuse, S. Kimura, and Y. Ouchi, 2000. Effect of ions on antibacterial activity of human beta defensin 2. Microbiol. Immunol. 44: 749-754   DOI   PUBMED
4 Tassi, A., S. Luca, and G. Anna. 2000. Amphipathic, ${\alpha}-Helical$ Antimicrobial Peptides. Biopolymers 55: 4-30   DOI   ScienceOn
5 Zasloff, M. 2002. Antimicrobial peptides of multicellular organisms. Nature 415: 389-395   DOI   ScienceOn
6 Lee, J. H., J. H. Kim, S. W. Hwang, W. J. Lee, H. K. Yoon, H. S. Lee, and S. S. Hong. 2000. High-level expression of antimicrobial peptide mediated by a fusion partner reinforcing formation of inclusion bodies. Biochem. Biophys. Res. Commun. 277: 575-580   DOI   ScienceOn
7 Brown, K. L. and R. E. Hancock. 2006. Cationic host defense (antimicrobial) peptides. Curr. Opin. Immunol. 18: 24-30   DOI   ScienceOn
8 Liu, D. and W. F. DeGrado. 2001. De novo design, synthesis, and characterization of antimicrobial beta-peptides. J. Am. Chem. Soc. 123: 7553-7559   DOI   ScienceOn
9 Lee, J. H., J. H. Kim, S. S. Hong, H. S. Lee, and S. C. Kim. 1999. Multimeric expression of the antimicrobial peptide buforin IT in Escherichia coli by fusion to a cysteine-rich acidic peptide. J. Microbiol. Biotechnol. 9: 303-310
10 Falla, T. J., D. N. Karunaratne, and R. E. Hancock. 1996. Mode of action of the antimicrobial peptide indolicidin. J. BioI. Chem. 271: 19298-19303   DOI   ScienceOn
11 Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual. 2nd ed. Cold Spring Harbor Laboratory Press, U.S.A
12 Ge, Y., D. L. MacDonald, K. J. Holroyd, C. Thornsberry, H. Wexler, and Z. Zasloff. 1999. In vitro antibacterial properties of pexiganan, an analog of magainin. Antimicrob. Agents Chemother. 43: 782-788   PUBMED
13 Kliiver, E., S. Schulz-Maronde, S. Scheid, B. Meyer, W. G. Forssmann, and K. Adermann. 2005. Structure-activity relation of human beta-defensin 3: influence of disulfide bonds and cysteine substitution on antimicrobial activity and cytotoxicity, Biochemistry 44: 9804-9816   DOI   ScienceOn
14 Tencza, S. B., J. P. Douglass, D. J. Creighton, R. C. Montelaro Jr., and T. A. Mietzner. 1997. Novel antimicrobial peptides derived from human immunodeficiency virus type 1 and other lentivirus transmembrane proteins. Antimicrob. Agents Chemother. 41: 2394-2398   PUBMED
15 Deslouches, B., S. M. Phadke, V. Lazarevic, M. Cascio, K. Islam, R. C. Montelaro, and T. A. Mietzner. 2005. De novo generation of cationic antimicrobial peptides: influence of length and tryptophan substitution on antimicrobial activity. Antimicrob. Agents Chemother. 49: 316-322   DOI   ScienceOn
16 Marr, A. K., W. J. Gooderham, and R. E. Hancock. 2006. Antibacterial peptides for therapeutic use: obstacles and realistic outlook. Curr. Opin. Pharmacol. 6: 468-472   DOI   ScienceOn
17 Minahk, C. J. and R. D. Morero. 2003. Inhibition of enterocin CRL35 antibiotic activity by mono- and divalent ions. Lett. Appl. Microbiol. 37: 374-379   DOI   ScienceOn