• 제목/요약/키워드: li-polymer battery

검색결과 155건 처리시간 0.025초

Electrochemical Performance of High-Voltage LiMn0.8Fe0.2PO4 Cathode with Polyacrylonitrile (PAN)-Based Gel Polymer Electrolyte

  • Kwon, O. Hyeon;Kim, Jae-Kwang
    • Korean Chemical Engineering Research
    • /
    • 제57권4호
    • /
    • pp.547-552
    • /
    • 2019
  • Electrochemical properties of $LiMn_{0.8}Fe_{0.2}PO_4$ cathode were investigated with gel polymer electrolyte (GPE). To access fast and efficient transport of ions and electrons during the charge/discharge process, a pure and well-crystallized $LiMn_{0.8}Fe_{0.2}PO_4$ cathode material was directly synthesized via spray-pyrolysis method. For high operation voltage, polyacrylonitrile (PAN)-based gel polymer electrolyte was then prepared by electrospinning process. The gel polymer electrolyte showed high ionic conductivity of $2.9{\times}10^{-3}S\;cm^{-1}$ at $25^{\circ}C$ and good electrochemical stability. $Li/GEP/LiMn_{0.8}Fe_{0.2}PO_4$ cell delivered a discharge capacity of $159mAh\;g^{-1}$ at 0.1 C rate that was close to the theoretical value ($170mAh\;g^{-1}$). The cell allows stable cycle performance (99.3% capacity retention) with discharge capacity of $133.5mAh\;g^{-1}$ for over 300 cycles at 1 C rate and exhibits high rate-capability. PAN-based gel polymer is a suitable electrolyte for application in $LiMn_{0.8}Fe_{0.2}PO_4/Li$ batteries with perspective in high energy density and safety.

Cycling Performance of Li4Ti5O12 Electrodes in Ionic Liquid-Based Gel Polymer Electrolytes

  • Kim, Jin-Hee;Kang, Yong-Ku;Kim, Dong-Won
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권2호
    • /
    • pp.608-612
    • /
    • 2012
  • We investigated the cycling behavior of $Li_4Ti_5O_{12}$ electrode in a cross-linked gel polymer electrolyte based on non-flammable ionic liquid consisting of 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide and vinylene carbonate. The $Li_4Ti_5O_{12}$ electrodes in ionic liquid-based gel polymer electrolytes exhibited reversible cycling behavior with good capacity retention. Cycling data and electrochemical impedance spectroscopy analyses revealed that the optimum content of the cross-linking agent necessary to ensure both acceptable initial discharge capacity and good capacity retention was about 8 wt %.

Surface Treatment of LiFePo4 Cathode Material for Lithium Secondary Battery

  • Son, Jong-Tae
    • 전기화학회지
    • /
    • 제13권4호
    • /
    • pp.246-250
    • /
    • 2010
  • In this study, nano-crystallized $Al_2O_3$ was coated on the surface of $LiFePO_4$ powders via a novel dry coating method. The influence of coated $LiFePO_4$ upon electrochemical behavior was discussed. Surface morphology characterization was achieved by transmission electron microscopy (TEM), clearly showing nano-crystallized $Al_2O_3$ on $LiFePO_4$ surfaces. Furthermore, it revealed that the $Al_2O_3$-coated $LiFePO_4$ cathode exhibited a distinct surface morphology. It was also found that the $Al_2O_3$ coating reduces capacity fading especially at high charge/discharge rates. Results from the cyclic voltammogram measurements (2.5-4.2 V) showed a significant decrease in both interfacial resistance and cathode polarization. This behavior implies that $Al_2O_3$ can prevent structural change of $LiFePO_4$ or reaction with the electrolyte on cycling. In addition, the $Al_2O_3$ coated $LiFePO_4$ compound showed highly improved area-specific impedance (ASI), an important measure of battery performance. From the correlation between these characteristics of bare and coated $LiFePO_4$, the role of $Al_2O_3$ coating played on the electrochemical performance of $LiFePO_4$ was probed.

리튬 폴리머 전지용 $LiMnO_2$의 열처리 온도에 따른 충방전 특성 (Charge-discharge Properties of $LiMnO_2$ as a Function of Heat Treatment Temperature for Lithium Polymer Batteries)

  • 조영재;위성동;김상기;구할본;김종욱;박계춘
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 춘계학술대회 논문집 센서 박막재료
    • /
    • pp.23-26
    • /
    • 2001
  • The properties of $LiMnO_2$ was studied as a cathode active material for lithium polymer batteries. $LiMnO_2$ cathode active materials were synthesized by the reaction of $LiOH{\cdot}H_2O$ and $Mn_2O_3$ at various temperature under argon atmosphere. The powders were characterized by the X -ray diffraction. For lithium polymer battery applications, the $LiMnO_2$ cell was characterized electrochemically by charge-discharge experiments and a.c. impedance spectroscopy. And the relationship between the characteristics of powders and electrochemical properties was studied in this research. A maximum discharge capacity of 160~170 mAh/g for o-$LiMnO_2$ cell was achieved. The capacity of o-$LiMnO_2$ electrode demonstrated better than of the spinel $LiMnO_2$ by solid-state reaction.

  • PDF

항로표지(등부표) 전원공급용 고성능 축전지 개발 (Development of High Performance Battery for Navigation Aid's Power)

  • 윤석준;조명훈;이대표
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2009년도 공동학술대회
    • /
    • pp.435-438
    • /
    • 2009
  • 항로표지용 등부표는 주요 항로 및 항만 입출항 선박 안전 유도를 위한 해상교통 안전 시설로서 현재는 해상교통환경 변화로 다기능이 요구되는 상황이다. 최근 고광도 등명기와 항로표지원격감시제어 및 e-Navigation 지원시스템구축과 해양기상관측장비 등을 구축함에 따라 항로표지용 등부표에 더욱 안정적인 전원 공급을 위한 고성능 축전지가 요구되고 있다. 본 연구에서는 리튬이차전지 중에서도 안전성이 우수한 리튬폴리머전지 설계기술을 적용, 기존 산화물계보다 안전성이 보다 더 우수한 $LiFePO_4$를 양극재료로 사용하여 단전지를 개발하고 단전지의 전기적 특성 고찰하였다. 또한 단전지를 이용한 3.6kWh급 축전지를 제작하여 그 성능을 연축전지와 비교 분석하였다.

  • PDF

다양한 형태의 AAO membrane 제조 및 리튬이온 전지의 분리막 응용 연구 (Study on the Fabrication of Various AAO Membranes for the Application of Li-ion Battery Separator)

  • 김문수;임경민;하재윤;김용태;최진섭
    • 한국표면공학회지
    • /
    • 제54권5호
    • /
    • pp.213-221
    • /
    • 2021
  • In order to improve the energy density and safety of Li-ion batteries, the development of a separator with high thermal stability and electrolyte wettability is an important desire. Thus, the ceramic separator to replace the polymer type is one of the most promising materials that can prevent short-circuit caused by the formation of dendrite and thermal deformation. In this study, we introduce the fabrication of various anodic aluminum oxide membranes for the application of Li-ion battery separators with the advantages of improved mechanical/thermal stability, wettability, and a high rate of Li+ migration through the membrane. Two different types of through-holes and branched anodic aluminum oxide membranes are well used in lithium-ion battery separators, however, branched anodic aluminum oxide membranes exhibit the most improved performance with capacity (126.0 mAh g-1 @ 0.3C), capacity drop at the high C-rate (30.6 %), and low internal resistance (8.2 Ω).

FAST CHARGING STRATEGY FOR LITHIUM ION BATTERY

  • Hoang, Thi Quynh Chi;Lee, Dong-Choon
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2014년도 추계학술대회 논문집
    • /
    • pp.70-71
    • /
    • 2014
  • In this paper, an advanced charging strategy for improving the charging performance of the Li-ion polymer battery is proposed, which is based on the battery characteristic. Simulation results show that the proposed charging current pattern can improve the charging speed of battery in comparison with the standard CC-CV (constant current - constant voltage) charging strategy and the pulse-charging strategy.

  • PDF

PI 상태관측기를 이용한 리튬폴리머 배터리 SOC 추정 (The State of Charge Estimation for Lithium-Polymer Battery using a PI Observer)

  • 이준원;조종민;김성수;차한주
    • 전력전자학회논문지
    • /
    • 제20권2호
    • /
    • pp.175-181
    • /
    • 2015
  • In this study, a lithium polymer battery (LiPB) is simply expressed by a primary RC equivalent model. The PI state observer is designed in Matlab/Simulink. The non-linear relationship with the OCV-SOC is represented to be linearized with 0.1 pu intervals by using battery parameters obtained by constant-current pulse discharge. A state equation is configured based on battery parameters. The state equation, which applied Peukert's law, can estimate SOC more accurately. SOC estimation capability was analyzed by utilizing reduced Federal Test Procedure (FTP-72) current profile and using a bi-directional DC-DC converter at temperature ($25^{\circ}C$). The PI state observer, which is designed in this study, indicated a SOC estimation error rate of ${\pm}2%$ in any of the initial SOC states. The PI state observer confirms a strong SOC estimation performance despite disturbances, such as modeling errors and noise.