DOI QR코드

DOI QR Code

Study on the Fabrication of Various AAO Membranes for the Application of Li-ion Battery Separator

다양한 형태의 AAO membrane 제조 및 리튬이온 전지의 분리막 응용 연구

  • Kim, Moonsu (Department of Chemistry and Chemical Engineering, Inha University) ;
  • Lim, Kyungmin (Department of Chemistry and Chemical Engineering, Inha University) ;
  • Ha, Jaeyun (Department of Chemistry and Chemical Engineering, Inha University) ;
  • Kim, Yong-Tae (Department of Chemistry and Chemical Engineering, Inha University) ;
  • Choi, Jinsub (Department of Chemistry and Chemical Engineering, Inha University)
  • 김문수 (인하대학교 화학공학과) ;
  • 임경민 (인하대학교 화학공학과) ;
  • 하재윤 (인하대학교 화학공학과) ;
  • 김용태 (인하대학교 화학공학과) ;
  • 최진섭 (인하대학교 화학공학과)
  • Received : 2021.10.06
  • Accepted : 2021.10.24
  • Published : 2021.10.31

Abstract

In order to improve the energy density and safety of Li-ion batteries, the development of a separator with high thermal stability and electrolyte wettability is an important desire. Thus, the ceramic separator to replace the polymer type is one of the most promising materials that can prevent short-circuit caused by the formation of dendrite and thermal deformation. In this study, we introduce the fabrication of various anodic aluminum oxide membranes for the application of Li-ion battery separators with the advantages of improved mechanical/thermal stability, wettability, and a high rate of Li+ migration through the membrane. Two different types of through-holes and branched anodic aluminum oxide membranes are well used in lithium-ion battery separators, however, branched anodic aluminum oxide membranes exhibit the most improved performance with capacity (126.0 mAh g-1 @ 0.3C), capacity drop at the high C-rate (30.6 %), and low internal resistance (8.2 Ω).

Keywords

Acknowledgement

이 논문은 2020년도 정부(교육부)의 재원으로 한국연구재단 기초연구사업의 지원을 받아 수행된 연구임. (2020R1I1A1A01064020)

References

  1. S. S. Zhang, A review on the separators of liquid electrolyte Li-ion batteris, J. Power Sources, 164 (2007) 351-364. https://doi.org/10.1016/j.jpowsour.2006.10.065
  2. X. Huang, Separator technologies for lithium-ion batteries, J. Solid State Electrochem., 15 (2011) 649-662. https://doi.org/10.1007/s10008-010-1264-9
  3. J. Lee, C. -L. Lee, K. Park, I. -D. Kim, Synthesis of an Al2O3-coated polyimide nanofiber mat and its electrochemical characteristics as a separator for lithium ion batteries, J. Power Sources, 248 (2014) 1211-1217. https://doi.org/10.1016/j.jpowsour.2013.10.056
  4. Y. Liang, S. Cheng, J. Zhao, C. Zhang, S. Sun, N. Zhou, Y. Qiu, X. Zhang, Heat treatment of electrospun Polyvinylidene fluoride fibrous membrane separators for rechargeable lithium-ion batteries, J. Power Sources, 240 (2013) 204-211. https://doi.org/10.1016/j.jpowsour.2013.04.019
  5. N. S. Choi, Z. Chen, S. A. Freunberger, X. Ji, Y. K. Sun, K. Amine, G. Yushin, L. F. Nazar, J. Cho, P.G. Bruce, Challenges facing lithium batteries and electrical double-layer capacitors, Angew. Chem. Int. Ed., 51 (2012) 9994-10024. https://doi.org/10.1002/anie.201201429
  6. T. -H. Cho, M. Tanaka, H. Onishi, Y. Kondo, T. Nakamura, H. Yamazaki, S. Tanase, T. Sakai, Battery performances and thermal stability of polyacrylonitrile nano-fiber-based nonwoven separators for Li-ion battery, J. Power Sources, 181 (2008) 155-160. https://doi.org/10.1016/j.jpowsour.2008.03.010
  7. T. Dong, W. U. Arifeen, J. Choi, K. Yoo, T. J. Ko, Surface-Modified Electrospun Polyacrylonitrile Nano-membrane for a Lithium-Ion Battery Separator Based on Phase Separation Mechanism, Chem. Eng. J., (2020) 125646. https://doi.org/10.1016/j.cej.2020.125646
  8. S. Wu, J. Ning, F. Jiang, J. Shi, F. Huang, Ceramic Nanoparticle-Decorated Melt-Electrospun PVDF Nanofiber Membrane with Enhanced Performance as a Lithium-Ion Battery Separator, ACS omega, 4 (2019) 16309-16317. https://doi.org/10.1021/acsomega.9b01541
  9. Y. Ko, H. Yoo, J. Kim, Curable polymeric binder-ceramic composite-coated superior heat-resistant polyethylene separator for lithium ion batteries, RSC Adv., 4 (2014) 19229-19233. https://doi.org/10.1039/c4ra01309c
  10. M. Sundararajan, M. Devarajan, M. Jaafar, Investigation of surface and mechanical properties of Anodic Aluminium Oxide (AAO) developed on Al substrate for an electronic package enclosure, Surf. Coat. Technol., 401 (2020) 126273. https://doi.org/10.1016/j.surfcoat.2020.126273
  11. 원국광, 최태규, 양극산화 기술, 신광문화사 (2003).
  12. H. Masuda, and K. Fukuda, Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina, Science, 268 (1995) 1466-1468. https://doi.org/10.1126/science.268.5216.1466
  13. A. Rath, P. Theato, Advanced AAO Templating of Nanostructured Stimuli-Responsive Polymers: Hype or Hope?, Adv. Funct. Mater., 30 (2020) 1902959. https://doi.org/10.1002/adfm.201902959
  14. M. Remesova, S. Tkachenko, D. Kvarda, I. Rocnakova, B. Gollas, M. Menelaou, L. Celko, J. Kaiser, Effects of anodizing conditions and the addition of Al2O3/PTFE particles on the microstructure and the mechanical properties of porous anodic coatings on the AA1050 aluminium alloy, Appl. Surf. Sci., 513 (2020) 145780. https://doi.org/10.1016/j.apsusc.2020.145780
  15. J. Yi, H. Pan, J. Lin, J. Ding, Y. Feng, S. Thongmee, T. Liu, H. Gong, L. Wang, Ferromagnetism in ZnO Nanowires Derived from Electro-deposition on AAO Template and Subsequent Oxidation, Adv. Mater., 20 (2008) 1170-1174. https://doi.org/10.1002/adma.200702387
  16. Q. Xu, G. Meng, F. Han, Porous AAO template-assisted rational synthesis of large-scale 1D hybrid and hierarchically branched nanoarchitectures, Progress in Materials Science, 95 (2018) 243-285. https://doi.org/10.1016/j.pmatsci.2018.02.004
  17. H. Robatjazi, S.M. Bahauddin, L.H. Macfarlan, S. Fu, I. Thomann, Ultrathin AAO membrane as a generic template for sub-100 nm nanostructure fabrication, Chem. Mater., 28 (2016) 4546-4553. https://doi.org/10.1021/acs.chemmater.6b00722
  18. H. Takahasi, M. Nagayma, H. Akahori, A. Kitahara, Electron-microscopy of porous anodic oxide films on aluminium by ultra-thin sectioning technique: part 1. The structrual change of the film during the current recovery period, Microscopy, 22 (1973) 149-157.
  19. L. Zaraska, E. Kurowska, G.D. Sulka, M. Jaskula, Porous alumina membranes with branched nanopores as templates for fabrication of Y-shaped nanowire arrays, J. Solid State Electrochem., 16 (2012) 3611-3619. https://doi.org/10.1007/s10008-012-1795-3
  20. M. Kim, J. Lee, M. Je, B. Heo, H. Yoo, H. Choi, J. Choi, K. Lee, Electric field-driven one-step formation of vertical p-n junction TiO2 nanotubes exhibiting strong photocatalytic hydrogen production, J. Mater. Chem. A, 9 (2021), 2239-2247. https://doi.org/10.1039/D0TA10062E
  21. M. Kim, H. Yoo, J. Choi, Non-nickel-based sealing of anodic porous aluminum oxide in NaAlO2, Surf. Coat. Technol., 310 (2017), 106-112. https://doi.org/10.1016/j.surfcoat.2016.11.100
  22. J. Gruberger, E. Gileadi, Plating on anodized aluminum-I. The mechanism of charge transfer across the barrier-layer oxide film on 1100 aluminum, Electrochim. Acta, 31 (1986) 1531-1540. https://doi.org/10.1016/0013-4686(86)87072-4
  23. G. D. Sulka, W. J. Stepniowski, Structural features of self-organized nanopore arrays formed by anodization of aluminum in oxalic acid at relatively high temperatures, Electrochim. Acta, 54 (2009), 3683-3691. https://doi.org/10.1016/j.electacta.2009.01.046
  24. W. Lee, S. -J. Park, Porous Anodic Aluminum Oxide: Anodization and Templated Synthesis of Functional Nanostructures, Chem. Rev., 114 (2014), 7487-7556. https://doi.org/10.1021/cr500002z
  25. K. Schwirn, W. Lee, R. Hillebrand, M. Steinhart, K. Nielsch, U. Gosele, Self-Ordered Anodic Aluminum Oxide Formed by H2SO4 Hard Anodization, ACS Nano, 2 (2008), 302-310. https://doi.org/10.1021/nn7001322
  26. L. Zaraska, G. D. Sulka, M. Jaskula, Anodic alumina membranes with defined pore diameters and thicknesses obtained by adjusting the anodizing duration and pore opening/widening time, J. Solid State Electrochem., 15 (2011), 2427-2436. https://doi.org/10.1007/s10008-011-1471-z
  27. B. Marquardt, L. Eude, M. Gowtham, G. Cho, H. J. Jeong, M. Chatelet, C. S. Cojocaru, B. S. Kim, D. Pribat, Density control of electrodeposited Ni nanoparticles/nanowires inside porous anodic alumina templates by an exponential anodization voltage decrease, Nanotechnology, 19(40) (2008), 405607. https://doi.org/10.1088/0957-4484/19/40/405607
  28. C. Shuoshuo, L. Zhiyuan, H. Xing, Y. Hui, L. Yi, Competitive growth of branched channels inside AAOmembranes, J. Mater. Chem., 20 (2010), 1794-1798. https://doi.org/10.1039/b918343d
  29. H. Xing, L. Ziyuan, W. Kai, L. Yi, Fabrication of three dimensional interconnected porous carbons from branched anodic aluminum oxide template, Electrochem. Commun., 13(10) (2011), 1082-1085. https://doi.org/10.1016/j.elecom.2011.07.002
  30. Y. Fan, E. Sharbrough, H. Liu, Quantification of the Internal Resistance Distribution of Microbial Fuel Cells, Environ. Sci. Technol., 42(21) (2008), 8101-8107. https://doi.org/10.1021/es801229j