Browse > Article
http://dx.doi.org/10.5714/CL.2017.22.110

Li-ion battery anodes from ginkgo leaf-derived nanoporous carbons rich in redox-active heteroatoms  

Kim, Na Rae (Department of Polymer Science and Engineering, Inha University)
An, Hong Joo (Department of Polymer Science and Engineering, Inha University)
Yun, Young Soo (Department of Chemical Engineering, Kangwon National University)
Jin, Hyoung-Joon (Department of Polymer Science and Engineering, Inha University)
Publication Information
Carbon letters / v.22, no., 2017 , pp. 110-114 More about this Journal
Keywords
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ding L, Chen J, Dong B, Xi Y, Shi L, Liu W, Cao L. Organic macromolecule assisted synthesis of ultralong $carbon@TiO_2$ nanotubes for high performance lithium-ion batteries. Electrochim Acta, 200, 97 (2016). https://doi.org/10.1016/j.electacta.2016.03.180.   DOI
2 Li X, Geng D, Zhang Y, Meng X, Li R, Sun X. Superior cycle stability of nitrogen-doped graphene nanosheets as anodes for lithium ion batteries. Electrochem Commun, 13, 822 (2011). https://doi.org/10.1016/j.elecom.2011.05.012.   DOI
3 Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature, 414, 359 (2001). https://doi.org/10.1038/35104644.   DOI
4 Armand M, Tarascon JM. Building better batteries. Nature, 451, 652 (2008). https://doi.org/10.1038/451652a.   DOI
5 Rahman MA, Wong YC, Song G, Wen C. A review on porous negative electrodes for high performance lithium-ion batteries. J Porous Mater, 22, 1313 (2015). https://doi.org/10.1007/s10934-015-0010-1.   DOI
6 Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D. Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci, 4, 3243 (2011). https://doi.org/10.1039/c1ee01598b.   DOI
7 Aurbach D, Ein-Eli Y. The study of Li-graphite intercalation processes in several electrolyte systems using in situ X-ray diffraction. J Electrochem Soc, 142, 1746 (1995). https://doi.org/10.1149/1.2044188.   DOI
8 Bruce PG, Scrosati B, Tarascon JM. Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed, 47, 2930 (2008). https://doi.org/10.1002/anie.200702505.   DOI
9 Aricò AS, Bruce P, Scrosati B, Tarascon JM, van Schalkwijk W. Nanostructured materials for advanced energy conversion and storage devices. Nat Mater, 4, 366 (2005). https://doi.org/10.1038/nmat1368.   DOI
10 Guo YG, Hu JS, Wan LJ. Nanostructured materials for electrochemical energy conversion and storage devices. Adv Mater, 20, 2878 (2008). https://doi.org/10.1002/adma.200800627.   DOI
11 Nishi Y. Lithium ion secondary batteries: past 10 years and the future. J Power Sources, 100, 101 (2001). https://doi.org/10.1016/S0378-7753(01)00887-4.   DOI
12 Zhang J, Guo B, Yang Y, Shen W, Wang Y, Zhou X, Wu H, Guo S. Large scale production of nanoporous graphene sheets and their application in lithium ion battery. Carbon, 84, 469 (2015). https://doi.org/10.1016/j.carbon.2014.12.039.   DOI
13 Vu A, Qian Y, Stein A. Porous electrode materials for lithiumion batteries: how to prepare them and what makes them special. Adv Energy Mater, 2, 1056 (2012). https://doi.org/10.1002/aenm.201200320.   DOI
14 Ji L, Lin Z, Alcoutlabi M, Zhang X. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ Sci, 4, 2682 (2011). https://doi.org/10.1039/c0ee00699h.   DOI
15 Zheng F, Yang Y, Chen Q. High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metalorganic framework. Nat Commun, 5, 5261 (2014). https://doi.org/10.1038/ncomms6261.   DOI
16 Guo W, Li X, Xu J, Liu HK, Ma J, Dou SX. Growth of highly nitrogen-doped amorphous carbon for lithium-ion battery anode. Electrochim Acta, 188, 414 (2016). https://doi.org/10.1016/j.electacta.2015.12.045.   DOI
17 Sun X, Wang X, Feng N, Qiao L, Li X, He D. A new carbonaceous material derived from biomass source peels as an improved anode for lithium ion batteries. J Anal Appl Pyrolysis, 100, 181 (2013). https://doi.org/10.1016/j.jaap.2012.12.016.   DOI
18 Kim NR, Yun YS, Song MY, Hong SJ, Kang M, Leal C, Park YW, Jin HJ. Citrus-peel-derived, nanoporous carbon nanosheets containing redox-active heteroatoms for sodium-ion storage. ACS Appl Mater Interfaces, 8, 3175 (2016). https://doi.org/10.1021/acsami.5b10657.   DOI
19 Yun YS, Kim DH, Hong SJ, Park MH, Park YW, Kim BH, Jin HJ, Kang K. Microporous carbon nanosheets with redox-active heteroatoms for pseudocapacitive charge storage. Nanoscale, 7, 15051 (2015). https://doi.org/10.1039/c5nr04231c.   DOI
20 Global forest resources assessment 2015: how are the world's forests changing? Available from: http://www.fao.org/forest-resources-assessment/en/.
21 Wang J, Kaskel S. KOH activation of carbon-based materials for energy storage. J Mater Chem, 22, 23710 (2012). https://doi.org/10.1039/C2JM34066F.   DOI
22 Han SW, Jung DW, Jeong JH, Oh ES. Effect of pyrolysis temperature on carbon obtained from green tea biomass for superior lithium ion battery anodes. Chem Eng J, 254, 597 (2014). https://doi.org/10.1016/j.cej.2014.06.021.   DOI
23 Zhang Y, Zhang F, Li GD, Chen JS. Microporous carbon derived from pinecone hull as anode material for lithium secondary batteries. Mater Lett, 61, 5209 (2007). https://doi.org/10.1016/j.matlet.2007.04.032.   DOI
24 Selvamani V, Ravikumar R, Suryanarayanan V, Velayutham D, Gopukumar S. Fish scale derived nitrogen doped hierarchical porous carbon: a high rate performing anode for lithium ion cell. Electrochim Acta, 182, 1 (2015). https://doi.org/10.1016/j.electacta.2015.08.096.   DOI
25 Yun YS, Cho SY, Kim H, Jin HJ, Kang K. Ultra-thin hollow carbon nanospheres for pseudocapacitive sodium-ion storage. ChemElectroChem, 2, 359 (2015). https://doi.org/10.1002/celc.201402359.   DOI
26 Yun YS, Park KY, Lee B, Cho SY, Park YU, Hong SJ, Kim BH, Gwon H, kim H, Lee S, Park YW, Jin HJ, Kang K. Sodium-ion storage in pyroprotein-based carbon nanoplates. Adv Mater, 27, 6914 (2015). https://doi.org/10.1002/adma.201502303.   DOI
27 Lian P, Zhu X, Liang S, Li Z, Yang W, Wang H. Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries. Electrochim Acta, 55, 3909 (2010). https://doi.org/10.1016/j.electacta.2010.02.025.   DOI