• Title/Summary/Keyword: lens mold

Search Result 190, Processing Time 0.028 seconds

Investigation the tilling imbalance and dimensional variations of multi-cavity injection molded parts (다수 캐비티의 사출성형품에서 충전의 불균형과 치수편차의 고찰)

  • Kang, M.A.;Kim, Y.K.;Kim, J.M.;Lyu, M.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.266-270
    • /
    • 2007
  • Small injection molded articles such as lens and mobile product's parts are usually molded in multi-cavity mold. The problems occurred in multi-cavity molding are flow imbalance among the cavities. The flow imbalance affects on the dimensions and physical properties of molded articles. First of all, the origin of flow imbalance is geometrical imbalance of delivery system. However, even the geometry of delivery system is balanced well the cavity imbalance is being developed. This comes from the unsuitable operational conditions of injection molding. Among the operational conditions, injection speed is the most significant process variable affecting the filling imbalances in multi-cavity injection molding. In this study, experimental study of flow imbalance has been conducted for various injection speeds and materials. Also, the filling Imbalances were compared with CAE results. The dimensions and physical state of multi-cavity molded parts were examined. The results showed that the filling imbalances vary according to the injection speed and flow property of resins. Subsequently, the imbalanced filling and pressure distribution in the multi-cavity affect on the dimensions and physical states of molded parts.

  • PDF

Synthesis of Ultra High Refractive Index Monomer for Plastic Optical Lens and Its Ophthalmic Lens Preparation (플라스틱 안경렌즈용 초고굴절 모노머 합성 및 이를 이용한 안경렌즈 제조)

  • Jang, Dong Gyu;Kim, Jong Hyo;Lee, Soo Min;Roh, Soo Gyun
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.13 no.3
    • /
    • pp.1-6
    • /
    • 2008
  • Purpose: Plastic optical monomer materials having ultra high refractive index have an income of the whole quantity from advanced nations to domestic companies which are related to plastic optical lens. It is necessary to develop novel plastic optical lens materials in order to overcome a FTA provision and revitalize a stagnating optical lens industry in the interior optical lens industries. The new plastic optical lens materials against the substitution effect of income should be gradually demanded. This work will be synthesized novel super high refractive monomer resin materials of urethane lens series and studied the properties of optical lens using it. Methods: ETS-4 (2-(2-mercaptoethylthio)-3-{2-[3-mercapto-2-(2-mercaptoethylthio)propyl thio]ethylthio}propane -1-thiol), which is optical lens monomer resin having super high refractive index, was synthesized and identified its structure and property by elemental analysis, EI-MS, TGA, FT-IR spectroscopy, $^1H$ and $^{13}C$ NMR spectroscopies. After mixing evenly from mixed monomer resin and diisocyanate series, it was casting in glass mold. After thermal curing, the obtained optical lenses were measured and compared with the refractive index and Abbe number for studies of their optical properties. Results: We have synthesized the novel ultra high refractive index monomer resin, ETS-4, and have identified its structure and property by elemental analysis, EI-MS, TGA, FT-IR spectroscopy, $^1H$ and $^{13}C$ NMR spectroscopies. The existence of three isomers for EST-4 was identified by $^{13}C$ NMR spectroscopy. The refractive index ($N_d$ at $25^{\circ}C$) of monomer resin in liquid state obtained from the Abbe refractometer was 1.647. The refractive indexes of raw plastic optical lenses prepared from the mixed ETS-4 monomer and diisocyanate series were in the range of 1.656~1.680. Conclusions: Novel super high refractive index plastic optical lens monomer was synthesized and analysed, the optical lenses prepared using it were colorless transparency and excellent properties. It is of utility for the industrialization.

  • PDF

Fabrication and Modeling of Microlens Array by a Modified LIGA Process

  • Kim Dong Sung;Lee Hyun Sup;Yang Sang Sik;Lee Bong-Kee;Lee Sung-Keun;Kwon Tai Hun;Lee Seung S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.04a
    • /
    • pp.7-13
    • /
    • 2003
  • Microlens arrays were fabricated using a novel fabrication technology based on the exposure of a PMMA (Polymethylmethacrylate) sheet to deep X-rays and subsequent thermal treatment. X-ray irradiation causes the decrease of molecular weight of PMMA, which in turn decreases the glass transition temperature and consequently causes a net volume increase during the thermal cycle resulting in a swollen microlens. A new physical modeling and analyses for micro lens formation were presented according to experimental procedure. A simple analysis based on the new model is found to be capable of predicting the shapes of micro lens which depend on the thermal treatment. For the replication of micro lens arrays having various diameters with different foci on the same surface, the hot embossing and the microinjection molding processes has been successfully utilized with a mold insert that is fabricated by Ni-electroplating based on a PMMA microstructure of micro lenses. Fabricated microlenses showed good surface roughness with the order of 1nm.

  • PDF

Optical Properties of UV LEDs depending on Encapsulate Method using Silicone Encapsulants with Different Refractive Indices (굴절률이 다른 실리콘 봉지재의 봉지 방법에 따른 UV-A LED의 광 특성에 관한 연구)

  • Kim, Wan-Ho;Koo, Dai-Hyoung;Noh, Ju-Hyun;Lee, Kyung-Won;Jeon, Sie-Wook;Kim, Jae-Pil;Yeo, In-Seon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.3
    • /
    • pp.39-44
    • /
    • 2015
  • Optical characteristics including the radiant flux and viewing angle of UV LEDs were investigated according to both silicone encapsulants with different refractive indexes and lens shapes. Lead frame was fabricated using the enhanced heat dissipation characteristics with a heat slug structure and the reflector based on EMC(Epoxy Mold Compound) material. Four types of lens shapes were designed and their optical characteristics depending on the refractive index of silicone encapsulants were evaluated. The maximum radiant flux can be achieved when the height of lens are 1.32mm and 1.08mm for silicone encapsulants with low and high refractive indexes, respectively. Depending on the encapsulating method, the viewing angle changes from $148.9^{\circ}$ to $130.2^{\circ}$ for low refractive index and from $145.3^{\circ}$ to $136.8^{\circ}$ for high refractive index. As a result, it is found that the optical characteristics of UV LEDs can be controled through both encapsulating method and the refractive index of encapsulants.

Characteristics of Surface Hardening of Dies Steel for Plastic Molding using Continuous Wave Md:YAG Laser (연속파형 Nd:YAG 레이저를 이용한 플라스틱성형용 금형강의 표면경화 특성)

  • Shin, Ho-Jun;Yoo, Young-Tae;Oh, Yong-Seak
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.1
    • /
    • pp.71-81
    • /
    • 2009
  • Die steel for plastic molding were used as mold material of automobile parts and electronic component industry. The material of this paper has superior to mechanical properties, such as repair weldability, corrosion resistance and high temperature strength, required mold parts for semitransparent. Laser-induced surface hardening technology is widely adopted to improver fatigue life and wear resistance via localized hardening at the surface of mold parts. The objective of this research work is to investigate on the characteristics of surface hardening of the laser process parameters, such as beam travel speed, laser power and defocsued spot position, for the case of die steel for plastic molding. Lens for surface hardening of large area is plano-convex type with elliptical profile to maintain uniform laser irradiation. According to the experimental results, large size of hardened layer at the surface of die steel for plastic molding was achieved, and microstructure of this layer was lath martensite. Optimal surface status and mechanical property of hardened layer could be obtained at 1095Watt, $0.25{\sim}0.3m/min$, 0mm (focal length: 232mm) for laser power, beam travel speed, and focal position. Where, heat input was $0.793{\times}10^{3}J/cm^2$, and width of hardened layer was 27.58mm.

Polymer Eyeglass Lens with Ultraviolet & High-Energy Visible Light Blocking Function for Eye Health (자외선 및 고에너지 가시광 차단 기능을 갖는 눈 건강을 위한 폴리머 안경렌즈)

  • Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.10-15
    • /
    • 2020
  • Ultraviolet rays, which have wavelengths smaller than 400 nm, are very harmful to the eyes. Recently, high-energy visible light was also revealed to be harmful to retinal cells. Therefore, polymer eyeglass lenses that can block UV and high-energy visible light are needed for eye health. In this study, high-refractive-index polymer eyeglass lens, n=1.67, were manufactured using the injection-mold method with the m-xylene diisocyanate monomer, 2,3-bis((2-mercaptoethyl)thio)-1-propanethiol monomer, benzotriazole UV absorber, release of alkyl phosphoric ester, dye mixture of CI solvent violet 13, and catalyst of dibutyltin dichloride mixture. A multi-layer anti-reflection coating was applied to manufactured polymer eyeglass lenses for both sides using an E-beam evaporation system. The optical properties of the manufactured lenses with the UV and high-energy visible light-blocking function were analyzed by UV-visible spectrophotometry. As a result, the polymer eyeglass lens with a UV absorber of 0.5 wt. % blocked 99% of UV and high-energy visible light shorter than 411 nm. The average transmittance of the polymer eyeglass lens with a UV absorber of 0.5wt.% was 97.9% in the range of 460 ~ 660 nm for photopic eye sensitivity higher than 10%. Therefore, clear image acquisition in photopic vision is possible.

A fabrication of PDMS micro lens using PMMA micro mold (PMMA 마이크로 몰드를 이용한 PDMS 마이크로 렌즈의 제작)

  • Kim, Il-Young;Min, Sang-Hong;Kim, Hyun-Su;Kim, Chang-Kyo;Yun, Tae-Uk
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1511-1512
    • /
    • 2011
  • 마이크로 렌즈를 제작하기 위해 PMMA 몰드를 PMMA 용액을 MEMS 기술을 이용하여 제작한 실리콘 마이크로 홀 어레이에 PMMA 용액을 스핀 코팅하여 제작하였다. PMMA 몰드에 PDMS 용액을 코팅하여 OLED 광추출 향상용 마이크로 렌즈를 제작하였다.

  • PDF

Develvopment of Infeed Grinding Machine and Its Effects on Spherical Surface Grinding (구면 전용 Infeed 연삭기의 개발과 성능평가)

  • 이상직;정해도;최헌종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.1028-1032
    • /
    • 1995
  • This paper describes the manufacture of spherical and aspherical surface on glass, superalloy and ceramic components. The rotationally symmetricallenses, and the ceramic or superalloy molds with spherical shapes are mainly generated by cutting processes on CNC lathe machine or 4,5 axis CNC machining centers. Recently, spherical shape parts require more precise and efficent machining technologies for wide material range such as optical lens of the lithography device in semiconductor manufacturing processes or the high precision mold machining of anti-chemical, anti-wear materials. In this paper, we introduce a newly developed infeed grinding machine with metal with metal bonded cup type wheel and its effects on spherical surface grinding.

  • PDF

Comparison of 3 Typical methods for ultra-precision grinding (가공방식에 따른 초정밀 연삭의 비교)

  • Park, Soon-Sub;Lee, Ki-Young;Kim, Hyoung-Mo;Lee, Jae-Seol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.3
    • /
    • pp.9-15
    • /
    • 2007
  • Three methods for grinding: cross grinding, slanted tool axis grinding and parallel grinding, were carried out to study the machinability of tungsten carbide mold for glass formed aspherics lens. In our research, the optimum grinding conditions were investigated in terms of feed-rate, relative velocity of wheel and work piece, tool marks and surface roughness. It is shown that cross grinding are most effective in removal ratio but poor in surface roughness. In addition, tool marks of each method were differentiated on direction and shape.

  • PDF

A Study on the Productivity Improvement of Thermal Infrared Camera an Optical Lens (열적외선 카메라용 광학계 생산성 향상에 관한 연구)

  • Kim, Sung-Yong;Hyun, Dong-Hun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.3
    • /
    • pp.285-293
    • /
    • 2009
  • Thermal infrared cameras have been conducted actively in various application areas, such as military, medical service, industries and cars. Because of their characteristic of sensing the radiant heat emitted from subjects in the range of long-wavelength($3{\sim}5{\mu}m$ or $8{\sim}12{\mu}m$), and of materializing a vision system, when general optics materials are used, they don't react to the light in the range of long-wavelength, and can't display their optic functions. Therefore, the materials with the feature of higher refractive index, reacting to the range of long-wavelength, are to be used. The kinds of materials with the characteristic of higher refractive index are limited, and their features are close to those of metals. Because of these metallic features, the existing producing method of optical systems were direct manufacturing method using grinding method or CAD/CAM, which put limit on productivity and made it difficult to properly cope with the increasing demand of markets. GASIR, a material, which can be molded easily, was selected among infrared ray optics materials in this study, and the optical system was designed with two Aspheric lenses. Because the lenses are molded in the environment of high temperature and high pressure, they require a special metallic pattern. The metallic pattern was produced with materials with ultra hardness that can stand high temperature and high pressure. As for the lens mold, GMP(Glass Molding Press) of the linear transfer method was used in order to improve the productivity of optical systems for thermal infrared cameras, which was the goal of this paper.

  • PDF