Browse > Article
http://dx.doi.org/10.5762/KAIS.2020.21.12.10

Polymer Eyeglass Lens with Ultraviolet & High-Energy Visible Light Blocking Function for Eye Health  

Kim, Ki-Chul (Department of Advanced Chemical Engineering, Mokwon University)
Publication Information
Journal of the Korea Academia-Industrial cooperation Society / v.21, no.12, 2020 , pp. 10-15 More about this Journal
Abstract
Ultraviolet rays, which have wavelengths smaller than 400 nm, are very harmful to the eyes. Recently, high-energy visible light was also revealed to be harmful to retinal cells. Therefore, polymer eyeglass lenses that can block UV and high-energy visible light are needed for eye health. In this study, high-refractive-index polymer eyeglass lens, n=1.67, were manufactured using the injection-mold method with the m-xylene diisocyanate monomer, 2,3-bis((2-mercaptoethyl)thio)-1-propanethiol monomer, benzotriazole UV absorber, release of alkyl phosphoric ester, dye mixture of CI solvent violet 13, and catalyst of dibutyltin dichloride mixture. A multi-layer anti-reflection coating was applied to manufactured polymer eyeglass lenses for both sides using an E-beam evaporation system. The optical properties of the manufactured lenses with the UV and high-energy visible light-blocking function were analyzed by UV-visible spectrophotometry. As a result, the polymer eyeglass lens with a UV absorber of 0.5 wt. % blocked 99% of UV and high-energy visible light shorter than 411 nm. The average transmittance of the polymer eyeglass lens with a UV absorber of 0.5wt.% was 97.9% in the range of 460 ~ 660 nm for photopic eye sensitivity higher than 10%. Therefore, clear image acquisition in photopic vision is possible.
Keywords
Polymer Eyeglass Lens; Ultraviolet; Blocking; High-Energy Visible Light; Anti-Reflection Coating;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 K-C. Kim, "Thickness effect of anti-reflection coating with graded refractive index structure", International Journal of Applied Engineering Research, Vol. 10, No. 13, pp. 33671-33673, 2015.
2 S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, "Nanostructured multilayer graded-index antireflection coating for Si solar sells with broadband and omnidirectional characteristics", Applied Physics Letters, Vol. 93, p. 251108, 2008. DOI: https://doi.org/10.1063/1.3050463   DOI
3 J. Moghal, J. Kobler, J. Sauer, J. Best, M. Gardener, A. A. R. Watt, and G. Wakefield, "High-performance, single-layer antireflective optical coatings comprising mesoporous silica nanoparticles", ACS Applied Materials & Interfaces, Vol. 4, pp. 854-859, 2012. DOI: https://doi.org/10.1021/am201494m   DOI
4 Y. Li, J. Zhang, and B. Yang, "Antireflective surfaces based on biomimetic nanopillared arrays', Nano Today, Vol. 5, pp. 117-127, 2010. DOI: https://doi.org/10.1016/j.nantod.2010.03.001   DOI
5 M. Notara, S. Behboudifard, M. A. Kluth, C. Mablo, C. Ganss, M. H. Frank, B. Schumacher, C. Cursiefen, "UV light-blocking contact lenses protect against short-term UVB-induced limbal stem cell niche damage and inflammation", Scientific Reports, Vol. 8, p. 12564, 2018. DOI: https://doi.org/10.1038/s41598-018-30021-8   DOI
6 J. Depry, R. Golding, L. Szczotka-Flynn, H. Dao, F. Baron, K. Cooper, "UVB-protective properties of contact lenses with intended use in photoresponsive eyelid dermatoses", Photodermatology, Photoimmunology & Photomedicine, Vol. 29, pp. 253-260, 2013. DOI: https://doi.org/10.1111/phpp.12064   DOI
7 Q. Fu, "Solar radiation", pp. 1859-1863, Elsevier Science, 2003. http://curry.eas.gatech.edu/Courses/6140/ency/Chapter3/Ency_Atmos/Radiation_Solar.pdf
8 from Wikipedia https://en.wikipedia.org/wiki/Ultraviolet
9 K-C. Kim, "Anti-reflection coating technology based high refractive index lens with ultra-violet ray blocking function", Journal of the Korea Academia-Industrial cooperation Society, Vol. 17, No. 12, pp. 482-487, 2016. DOI: https://doi.org/10.5762/KAIS.2016.17.12.482   DOI
10 L. Knels, M. Valtink, C. Roehlecke, A. Lupp, J. Vefa, M. Mehner, R. H. W. Funk, "Blue light stress in retinal neuronal(R28) cells is dependent on wavelength range and irradiance", European Journal of Neuroscience, Vol. 34, pp. 548-558, 2011. DOI: https://doi.org/10.1111/j.1460-9568.2011.07790.x   DOI
11 K. Ratnayake, J. L. Payton, O. H. Lakmal, A. Karunarathne,, "Blue light excited retinal intercepts cellular signaling", Scientific Reports, Vol. 8, p. 10207, 2018. DOI: https://doi.org/10.1038/s41598-018-28254-8   DOI
12 K-C. Kim, "A study on the anti-reflection coating effects of polymer eyeglasses lens", Journal of the Korea Academia-Industrial cooperation Society, Vol. 18, No. 1, pp. 216-221, 2017. DOI: https://doi.org/10.5762/KAIS.2017.18.1.216   DOI
13 K-C. Kim, "Effective graded refractive-index anti-reflection coating for high refractive-index polymer ophthalmic lenses", Materials Letters, Vol. 160, pp. 158-161, 2015. DOI: https://doi.org/10.1016/j.matlet.2015.07.108   DOI
14 C. W. Dunnil, "UV blocking glass: low cost filters for visible light photocatalytic assessment", International Journal of Photoenergy, Vol. 2014, p. 407027, 2014. DOI: https://doi.org/10.1155/2014/407027   DOI
15 S. A. Giannos, E. R. Kraft, L. J. Lyons, P. K. Gupta, "Spectral evaluation of eyeglass blocking efficiency of ultraviolet/high-energy visible blue light for ocular protection", Optom Vis Sci, Vol. 96, No. 7, pp. 513-522, 2019. DOI: http://doi.org/10.1097/opx.0000000000001393   DOI