• Title/Summary/Keyword: length encoding

Search Result 349, Processing Time 0.029 seconds

Expression of the Galactokinase Gene (gaIK) from Lactococcus lactis asp. lactis ATCC7962 in Escherichia coil

  • Lee, Hyong-Joo;Lee, Jung-Min;Park, Jae-Yeon;Lee, Jong-Hoon;Kim, Jeong-Hwon;Chang, Hea-Choon;Chung, Dae-Kyun;Kim, Somi-Cho
    • Journal of Microbiology
    • /
    • v.40 no.2
    • /
    • pp.156-160
    • /
    • 2002
  • The whole gal/lae operon genes of Lactococcus lactis ssp. lactis 7962 were reported as follows: galA-galM-galK-galT-lacA -lacZ-galE. The galK gene encoding a galactokinase involved in one of the Leloir pathways for galactose metabolism was found to be 1,197 bp in length and encodes a protein of 43,822 Da calculated molecular mass. The deduced amino acid sequence showed over 50% homology with GaIK proteins from several other lactic acid bacteria. The galK gene was expressed in E. coli and the product was identified as a 43 kDa protein which corresponds to the estimated size from the DNA sequence. The galactokinase activity of recombinant 5. coli was about 8 times greater against that of the host strain and more than 3 times higher than the induced L. lactis 7962.

Purification and Characterization of Beta-Glucosidase from Weissella cibaria 37

  • Lee, Kang Wook;Han, Nam Soo;Kim, Jeong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.12
    • /
    • pp.1705-1713
    • /
    • 2012
  • A gene encoding ${\beta}$-glucosidase was cloned from Weissella cibaria 37, an isolate from human feces. Sequence analysis showed that the gene could encode a protein of 415 amino acids in length, and the translated amino acid sequence showed homology (34-31%) with glycosyl hydrolase family 1 ${\beta}$-glucosidases. The gene was overexpressed in E. coli BL21(DE3) using pET26b(+) and a 50 kDa protein was overproduced, which matched well with the calculated size of the enzyme, 49,950.87 Da. Recombinant ${\beta}$-glucosidase was purified by using a his-tag affinity column. The purified ${\beta}$-glucosidase had an optimum pH and a temperature of 5.5 and $45^{\circ}C$, respectively. Among the metal ions (5mM concentration), $Ca^{2+}$ slightly increased the activity (108.2%) whereas $Cu^{2+}$ (46.1%) and $Zn^{2+}$ (56.7%) reduced the activity. Among the enzyme inhibitors (1 mM concentration), SDS was the strongest inhibitor (16.9%), followed by pepstatin A (45.2%). The $K_m$ and $V_{max}$ values of purified enzyme were 4.04 mM and 0.92 ${\mu}mol/min$, respectively, when assayed using pNPG (p-nitrophenyl-${\beta}$-D-glucopyranoside) as the substrate. The enzyme liberated reducing sugars from carboxymethyl cellulose (CMC).

VLSI Architecture of High Performance Huffman Codec (고성능 허프만 코덱의 VLSI 구조)

  • Choi, Hyun-Jun;Seo, Young-Ho;Kim, Dong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.2
    • /
    • pp.439-446
    • /
    • 2011
  • In this paper, we proposed and implemented a dedicated hardware for Huffman coding which is a method of entropy coding to use compressing multimedia data with video coding. The proposed Huffman codec consists Huffman encoder and decoder. The Huffman encoder converts symbols to Huffman codes using look-up table. The Huffman code which has a variable length is packetized to a data format with 32 bits in data packeting block and then sequentially output in unit of a frame. The Huffman decoder converts serial bitstream to original symbols without buffering using FSM(finite state machine) which has a tree structure. The proposed hardware has a flexible operational property to program encoding and decoding hardware, so it can operate various Huffman coding. The implemented hardware was implemented in Cyclone III FPGA of Altera Inc., and it uses 3725 LUTs in the operational frequency of 365MHz

Genetic Diversity of Sweet potato feathery mottle virus from Sweet Potatoes in Korea

  • Kwak, Hae-Ryun;Kim, Mi-Kyeong;Jung, Mi-Nam;Lee, Su-Heon;Park, Jin-Woo;Kim, Kook-Hyung;Ko, Sug-Ju;Choi, Hong-Soo
    • The Plant Pathology Journal
    • /
    • v.23 no.1
    • /
    • pp.13-21
    • /
    • 2007
  • Sweet potato feathery mottle virus(SPFMV) is one of the most prevalent viruses infecting sweet potatoes and occurs widely in sweet potato cultivating areas in Korea. To assess their genetic variation, a total of 28 samples infected with SPFMV were subjected to restriction fragment length polymorphism(RFLP) analysis using DNAs amplified by RT-PCR with specific primer sets corresponding to the coat protein(CP) region of the virus. The similarity matrix by UPGMA procedure indicated that 28 samples infected with SPFMV were classified into three groups based on the number and size of DNA fragments by digestion of CP-encoding regions with 7 enzymes including SalI, AluI, EcoRI, HindIII, FokI, Sau3AI, and DraI bands. Four primer combinations out of 5 designed sets were able to differentiate SPFMV and sweet potato virus G infection, suggesting that these specific primers could be used to differentiate inter-groups of SPFMV. Sequence analysis of the CP genes of 17 SPFMV samples were 97-99% and 91-93% identical at the intra-group and inter-groups of SPFMV, respectively. The N-terminal region of the CP is highly variable and examination of the multiple alignments of amino acid sequences revealed two residues(residues 31 and 32) that were consistently different between SPFMV-O and SPFMV-RC.

Characterization of Hibiscus Latent Fort Pierce Virus-Derived siRNAs in Infected Hibiscus rosa-sinensis in China

  • Lan, Han-hong;Lu, Luan-mei
    • The Plant Pathology Journal
    • /
    • v.36 no.6
    • /
    • pp.618-627
    • /
    • 2020
  • Although limited progress have been made about pathogen system of Hibiscus rosa-sinensis and Hibiscus latent Fort Pierce virus (HLFPV), interaction between plant host and pathogen remain largely unknown, which led to deficiency of effective measures to control disease of hibiscus plants caused by HLFPV. In this study, infection of HLFPV in Hibiscus rosa-sinensis was firstly confirmed for the first time by traditional electron microscopy, modern reverse transcription polymerase chain reaction and RNA-seq methods in China (HLFPV-Ch). Sequence properties analyzing suggested that the full-length sequences (6,465 nt) of HLFPV-Ch had a high sequence identity and a similar genomic structure with other tobamoviruses. It includes a 5'-terminal untranslated region (UTR), followed by four open reading frames encoding for a 128.5-kDa replicase, a 186.5-kDa polymerase, a 31-kDa movement protein, 17.6-kDa coat protein, and the last a 3'-terminal UTR. Furthermore, HLFPV-Ch-derived virus-derived siRNAs (vsiRNAs) ant its putative target genes, reported also for the first time, were identified and characterized from disease Hibiscus rosa-sinensis through sRNA-seq and Patmatch server to investigate the interaction in this pathogen systems. HLFPV-Ch-derived vsiRNAs demonstrated several general and specific characteristics. Gene Ontology classification revealed predicted target genes by vsiRNAs are involved in abroad range of cellular component, molecular function and biological processes. Taken together, for first time, our results certified the HLFPV infection in China and provide an insight into interaction between HLFPV and Hibiscus rosa-sinensis.

Complete Sequence of a Gene Encoding KAR3-Related Kinesin-like Protein in Candida albicans

  • Kim Min-Kyoung;Lee Young Mi;Kim Wankee;Choi Wonja
    • Journal of Microbiology
    • /
    • v.43 no.5
    • /
    • pp.406-410
    • /
    • 2005
  • In contrast to Saccharomyces cerevisiae, little is known about the kinesin-like protein (KLP) in Candida albicans. The motor domain of kinesin, or KLP, contains a subregion, which is well conserved from yeast to humans. A similarity search, with the murine ubiquitous kinesin heavy chain region as a query, revealed 6 contigs that contain putative KLPs in the genome of C. albicans. Of these, the length of an open reading (ORF) of 375 amino acids, temporarily designated CaKAR3, was noticeably short compared with the closely related S. cerevisiae KAR3 (ScKAR3) of 729 amino acids. This finding prompted us to isolate a ${\lambda}$ genomic clone containing the complete CaKAR3 ORF, and here the complete sequence of CaKAR3 is reported. CaKAR3 is a C-terminus motor protein, of 687 amino acids, encoded by a non-disrupting gene. When compared with ScKAR3, the amino terminal region of 112 amino acids was unique, with the middle part of the 306 amino acids exhibiting $25\%$ identity and $44\%$ similarity, while the remaining C-terminal motor domain exhibited $64\%$ identity and $78\%$ similarity, and have been submitted to GeneBank under the accession number AY182242.

Functional Implication of the tRNA Genes Encoded in the Chlorella Virus PBCV-l Genome

  • Lee, Da-Young;Graves, Michael V.;Van Etten, James L.;Choi, Tae-Jin
    • The Plant Pathology Journal
    • /
    • v.21 no.4
    • /
    • pp.334-342
    • /
    • 2005
  • The prototype Chlorella virus PBCV-l encodes 11 tRNA genes and over 350 protein-encoding genes in its 330 kbp genome. Initial attempts to overexpress the recombinant A189/192R protein, a putative virus attachment protein, in E. coli strain BL21(DE3) SI were unsuccessful, and multiple protein bands were detected on Western blots. However, the full-length A189/192R recombinant protein or fragments derived from it were detected when they were expressed in E. coli BL21 CodonPlus (DE3) RIL, which contains extra tRNAs. Codon usage analysis of the a189/192r gene showed highly biased usage of the AGA and AVA codons compared to genes encoded by E. coli and Chlorella. In addition, there were biases of XXA/U($56\%$) and XXG/ C($44\%$) in the codons recognized by the viral tRNAs, which correspond to the codon usage bias in the PBCV-1 genome of XXA/U ($63\%$) over those ending in XXC/G ($37\%$). Analysis of the codon usage in the major capsid protein and DNA polymerase showed preferential usage of codons that can be recognized by the viral tRNAs. The Asn (AAC) and Lys (AAG) codons whose corresponding tRNA genes are duplicated in the tRNA gene cluster were the most abundant (i.e., preferred) codons in these two proteins. The tRNA genes encoded in the PBCV-l genome seem to play a very important role during the synthesis of viral proteins through supplementing the tRNAs that are frequently used in viral proteins, but are rare in the host cells. In addition, these tRNAs would help the virus to adapt to a wide range of hosts by providing tRNAs that are rare in the host cells.

Molecular Characterization of the Soybean L-Asparaginase Gene Induced by Low Temperature Stress

  • Cho, Chang-Woo;Lee, Hye-Jeong;Chung, Eunsook;Kim, Kyoung Mi;Heo, Jee Eun;Kim, Jung-In;Chung, Jongil;Ma, Youzhi;Fukui, Kiichi;Lee, Dae-Won;Kim, Doh-Hoon;Chung, Young-Soo;Lee, Jai-Heon
    • Molecules and Cells
    • /
    • v.23 no.3
    • /
    • pp.280-286
    • /
    • 2007
  • L-asparaginase (EC 3.5.1.1) catalyzes the hydrolysis of the amide group of L-asparagine, releasing aspartate and $NH_4{^+}$. We isolated a low temperature-inducible cDNA sequence encoding L-asparaginase from soybean leaves. The full-length L-asparaginase cDNA, designated GmASP1, contains an open reading frame of 1,258 bp coding for a protein of 326 amino acids. Genomic DNA blotting and fluorescence in situ hybridization showed that the soybean genome has two copies of GmASP1. GmASP1 mRNA was induced by low temperature, ABA and NaCl, but not by heat shock or drought stress. E. coli cells expressing recombinant GmASP1 had 3-fold increased L-asparaginase activity. A possible function of L-asparaginase in the early response to low temperature stress is discussed.

ZNF435, a Novel Human SCAN-containing Zinc Finger Protein, Inhibits AP-1-mediated Transcriptional Activation

  • Gu, Xing;Zheng, Mei;Fei, Xiangwei;Yang, Zhenxing;Li, Fan;Ji, Chaoneng;Xie, Yi;Mao, Yumin
    • Molecules and Cells
    • /
    • v.23 no.3
    • /
    • pp.316-322
    • /
    • 2007
  • Zinc finger transcription factor genes are a significant fraction of the genes in the vertebrate genome. Here we report the isolation and characterization of a human zinc finger-containing gene, ZNF435, from a fetal brain cDNA library. ZNF435 cDNA is 1290 base pairs in length and contains an open reading frame encoding 349 amino acids with four C2H2-type zinc fingers at its carboxyl terminus and a SCAN motif at its amino terminus. RT-PCR results showed that ZNF435 was expressed in all tested tissues. A ZNF435-GFP fusion protein was located in the nucleus and the four zinc fingers acted as nuclear localization signals (NLSs). ZNF435 was found to be capable of homo-association, and this effect was independent of its zinc fingers. Furthermore, ZNF435 proved to be a transcription repressor as its overexpression in AD293 cells inhibited the transcriptional activities of AP-1.

A PRML System for Perpendicular Magnetic Recording Channel in Wireless Multimedia Networks (무선 멀티미디어 네트워크에서 수직 자기기록장치를 위한 PRML 시스템)

  • Kim Jeong-so;Hwang Gi-yean
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.5
    • /
    • pp.454-457
    • /
    • 2004
  • Partial response maximum likelihood (PRML) is a powerful and indispensable detection scheme for perpendicular magnetic recording channels. The proposed method is a low complexity detection scheme which is related to the PRML system. The simulation results show that PR(1,2,3,4,3,2,1)ML and PR(l,2,3,3,2,1)ML using modulation encoding with R=2/3 have the most improved performance at K=3,4. However, in the case of K=3, R=2/3 PR(1,1,1,1)ML effectively reduces the complexity compared to PR(1,2,3,3,2,1), but it has L5dB performance degradation at most. In the case of K=4, R=l PR(1,2,2,1)ML has very low complexity compared to R=2/3 PR(l,2,3,4,3,2,1)ML. but it has about 2dB performance degradation at most.

  • PDF