Browse > Article

Molecular Characterization of the Soybean L-Asparaginase Gene Induced by Low Temperature Stress  

Cho, Chang-Woo (Department of Genetic Engineering, Dong-A University)
Lee, Hye-Jeong (Department of Genetic Engineering, Dong-A University)
Chung, Eunsook (Department of Genetic Engineering, Dong-A University)
Kim, Kyoung Mi (Department of Genetic Engineering, Dong-A University)
Heo, Jee Eun (Department of Genetic Engineering, Dong-A University)
Kim, Jung-In (School of Food and Life Science, Biohealth Products Research Center, Inje University)
Chung, Jongil (Department of Agronomy, Gyeongsang National University)
Ma, Youzhi (Institutes of Crop Breeding and Cultivation, China Academy of Agriculture Sciences)
Fukui, Kiichi (Department of Biotechnology, Graduate School of Engineering, Osaka University)
Lee, Dae-Won (Department of life Science, Dongguk University)
Kim, Doh-Hoon (Department of Genetic Engineering, Dong-A University)
Chung, Young-Soo (Department of Genetic Engineering, Dong-A University)
Lee, Jai-Heon (Department of Genetic Engineering, Dong-A University)
Abstract
L-asparaginase (EC 3.5.1.1) catalyzes the hydrolysis of the amide group of L-asparagine, releasing aspartate and $NH_4{^+}$. We isolated a low temperature-inducible cDNA sequence encoding L-asparaginase from soybean leaves. The full-length L-asparaginase cDNA, designated GmASP1, contains an open reading frame of 1,258 bp coding for a protein of 326 amino acids. Genomic DNA blotting and fluorescence in situ hybridization showed that the soybean genome has two copies of GmASP1. GmASP1 mRNA was induced by low temperature, ABA and NaCl, but not by heat shock or drought stress. E. coli cells expressing recombinant GmASP1 had 3-fold increased L-asparaginase activity. A possible function of L-asparaginase in the early response to low temperature stress is discussed.
Keywords
Fluorescence In Situ Hybridization; Gene Expression; Low Temperature; Soybean; L-Asparaginase; Stress;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By Web Of Science : 10  (Related Records In Web of Science)
연도 인용수 순위
1 Grant, M. and Bevan, M. W. (1994) Asparaginase gene expression is regulated in a complex spatial and temporal pattern in nitrogen-sink tissues. Plant J. 5, 695-704   DOI   ScienceOn
2 Lough, T. J., Chang, K. S., Carne, A., Monk, B, C., Reynolds, P, H, S., et al. (1992) L-asparaginase from developing seeds of lupinus arboreus. Phytochemistry 31, 1519-1527   DOI   ScienceOn
3 Schubert, K, R. (1986) Product of biological nitrogen fixation in higher plants: synthesis, transport and metabolism. Ann. Rev. Plant Physiol. 37, 539-574   DOI   ScienceOn
4 Shure, M., Wessler, S., and Fedoroff, N. (1983) Molecular identification and isolation of Waxy locus in maize. Cell 35, 225-233   DOI   ScienceOn
5 Sieciechowicz, K. A., Ireland, R. J., and Joy, K. W. (1985) Diurnal variation of asparaginase in developing pea leaves. Plant Physiol. 77, 506-508   DOI   ScienceOn
6 Tonin, G. S. and Sodek, L. (1990) Asparaginase, allantoinase and glutamine synthetase activities in soybean cotyledons grown in vitro. Phytochemistry 29, 2829-2831   DOI   ScienceOn
7 Verwoerd, T. C., Dekker, B. M., and Hoekema, A. (1989) A small-scale procedure for rapid isolation of plant RNAs. Nucleic Acids Res. 17, 2362
8 Atkins, C. A., Pate J. S., and Sarkey, P. J. (1975) Asparagine metabolism - key to nitrogen nutrition of developing legume seeds. Plant Physiol. 56, 807-812   DOI   ScienceOn
9 Fukui, K. and Iijima, K. (1991) Somatic chromosome map of rice by imaging methods. Theor. Appl. Genet. 81, 89-96
10 Streeter, J. G. (1977) Asparaginase and asparagine transaminase in soybean leaves and root nodules. Plant Physiol. 60, 235-239   DOI   ScienceOn
11 Sieciechowicz, K. A., Ireland, R. J., and Joy, K. W. (1988a) Diurnal changes in asparaginase activity in pea leaves. II. Regulation of activity. J. Exp. Bot. 39, 707-721   DOI
12 Thompson, J. D., Plewniak, F., Thierry, J., and Poch, O. (2000) DbClustal: rapid and reliable global multiple alignments of protein sequences detected by database searches. Nucleic Acids Res. 28, 2919-2926   DOI
13 Sodek, L. and Lea, P. J. (1993) Asparaginase from the testa of developing lupin and pea seeds. Phytochemistry 34, 51-56   DOI   ScienceOn
14 Michalska, K., Bujacz, G., and Jaskolski, M. (2006) Crystal structure of plant asparaginase. J. Mol. Biol. 306, 105-116
15 Sieciechowicz, K. A., Joy, K. W., and Ireland, R. J. (1988b) Diurnal changes in asparaginase activity in pea leaves. I. The requirement for light for increased activity. J. Exp. Bot. 39, 695-706   DOI
16 Takahashi, R. and Shimosaka, E. (1997) cDNA sequence analysis and expression of two cold-regulated genes in soybean. Plant Sci. 123, 93-104   DOI   ScienceOn
17 Scott, D. B., Farnden, K. J. F., and Robertson, J. G. (1976) Ammonia assimilation in lupin nodules. Nature 263, 703-705   DOI   ScienceOn
18 Church, G. M. and Gilbert, W. (1984) Genomic sequencing. Proc. Natl. Acad. Sci. USA 81, 1991-1995
19 Fawcett, J. K. and Scott, J. E. (1960) A rapid and precise method for the determination of urea. J. Clin. Pathol. 13, 156-159   DOI
20 Lea, P. J. and Miflin, B, J. (1980) Transport and metabolism of asparagine and other nitrogen compounds within the plant; in The Biochemistry of Plants, Stumpt, P. K. and Conn, E. E. (eds.), Vol. 5, pp. 569-607, Academic Press, New York
21 Soares, A, L., Guimaraes, G. M., Polakiewicz, B., de Moraes Pitombo, R. N., and Abrahao-Neto, J. (2002) Effects of polyethylene glycol attachment on physicochemical and biological stability of E. coli L-asparaginase. Int. J. Pharm. 237, 163-170   DOI
22 Chang, K. S. and Farnden, K. J. F. (1981) Purification and properties of asparaginase from lupinus arboreus and lupinus angustifolius. Arch. Biochem. Biophys. 208, 49-58   DOI   ScienceOn
23 Lea, P. J., Fowden, L., and Miflin, B, J. (1978) The purification and properties of asparaginase from Lupinus species. Phytochemistry 17, 217-222   DOI   ScienceOn
24 Sieciechowicz, K. A., Joy, K. W., and Ireland, R. J. (1988c) The metabolism of asparagine in plants. Phytochemistry 27, 663-671   DOI   ScienceOn
25 Boos, J., Werber, G., Ahlke, E., Schulze-Westhoff, P., Nowak-Gottl, U., et al. (1996) Monitoring of asparaginase activity and asparagine levels in children on different asparaginase preparations. Eur. J. Cancer 32A, 1544-1550
26 Sodek, L., Lea, P. J., and Miflin, D. J. (1980) Distribution and properties of a potassium-dependent asparaginase isolated from developing seeds of Pisum sativum and other plants. Plant Physiol. 65, 22-26   DOI   ScienceOn
27 Bruneau, L., Chapman, R., and Marsolais, F. (2006) Co-occurrence of both L-asparaginase subtypes in Arabidopsis: At3g16150 encodes a $K^+$-dependent L-asparaginase. Planta 224, 668-679   DOI   ScienceOn
28 Lee, S.-C., Lee, M.-Y., Kim, S.-J., Jun, S.-H., An, G., et al. (2005) Characterization of an abiotic stress-inducible dehydrin gene, OsDhn1, in rice (Oryza sativa L.) Mol. Cells 19, 212-218