• Title/Summary/Keyword: least squares support vector machine

Search Result 67, Processing Time 0.028 seconds

Optimal design of homogeneous earth dams by particle swarm optimization incorporating support vector machine approach

  • Mirzaei, Zeinab;Akbarpour, Abolfazl;Khatibinia, Mohsen;Siuki, Abbas Khashei
    • Geomechanics and Engineering
    • /
    • v.9 no.6
    • /
    • pp.709-727
    • /
    • 2015
  • The main aim of this study is to introduce optimal design of homogeneous earth dams with oblique and horizontal drains based on particle swarm optimization (PSO) incorporating weighted least squares support vector machine (WLS-SVM). To achieve this purpose, the upstream and downstream slopes of earth dam, the length of oblique and horizontal drains and angle among the drains are considered as the design variables in the optimization problem of homogeneous earth dams. Furthermore, the seepage through dam body and the weight of dam as objective functions are minimized in the optimization process simultaneously. In the optimization procedure, the stability coefficient of the upstream and downstream slopes and the seepage through dam body as the hydraulic responses of homogeneous earth dam are required. Hence, the hydraulic responses are predicted using WLS-SVM approach. The optimal results of illustrative examples demonstrate the efficiency and computational advantages of PSO with WLS-SVM in the optimal design of homogeneous earth dams with drains.

Prediction of unmeasured mode shapes and structural damage detection using least squares support vector machine

  • Kourehli, Seyed Sina
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.3
    • /
    • pp.379-390
    • /
    • 2018
  • In this paper, a novel and effective damage diagnosis algorithm is proposed to detect and estimate damage using two stages least squares support vector machine (LS-SVM) and limited number of attached sensors on structures. In the first stage, LS-SVM1 is used to predict the unmeasured mode shapes data based on limited measured modal data and in the second stage, LS-SVM2 is used to predicting the damage location and severity using the complete modal data from the first-stage LS-SVM1. The presented methods are applied to a three story irregular frame and cantilever plate. To investigate the noise effects and modeling errors, two uncertainty levels have been considered. Moreover, the performance of the proposed methods has been verified through using experimental modal data of a mass-stiffness system. The obtained damage identification results show the suitable performance of the proposed damage identification method for structures in spite of different uncertainty levels.

On Line LS-SVM for Classification

  • Kim, Daehak;Oh, KwangSik;Shim, Jooyong
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.2
    • /
    • pp.595-601
    • /
    • 2003
  • In this paper we propose an on line training method for classification based on least squares support vector machine. Proposed method enables the computation cost to be reduced and the training to be peformed incrementally, With the incremental formulation of an inverse matrix in optimization problem, current information and new input data can be used for building the new inverse matrix for the estimation of the optimal bias and Lagrange multipliers, so the large scale matrix inversion operation can be avoided. Numerical examples are included which indicate the performance of proposed algorithm.

Censored varying coefficient regression model using Buckley-James method

  • Shim, Jooyong;Seok, Kyungha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.5
    • /
    • pp.1167-1177
    • /
    • 2017
  • The censored regression using the pseudo-response variable proposed by Buckley and James has been one of the most well-known models. Recently, the varying coefficient regression model has received a great deal of attention as an important tool for modeling. In this paper we propose a censored varying coefficient regression model using Buckley-James method to consider situations where the regression coefficients of the model are not constant but change as the smoothing variables change. By using the formulation of least squares support vector machine (LS-SVM), the coefficient estimators of the proposed model can be easily obtained from simple linear equations. Furthermore, a generalized cross validation function can be easily derived. In this paper, we evaluated the proposed method and demonstrated the adequacy through simulate data sets and real data sets.

Switching Regression Analysis via Fuzzy LS-SVM

  • Hwang, Chang-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.2
    • /
    • pp.609-617
    • /
    • 2006
  • A new fuzzy c-regression algorithm for switching regression analysis is presented, which combines fuzzy c-means clustering and least squares support vector machine. This algorithm can detect outliers in switching regression models while yielding the simultaneous estimates of the associated parameters together with a fuzzy c-partitions of data. It can be employed for the model-free nonlinear regression which does not assume the underlying form of the regression function. We illustrate the new approach with some numerical examples that show how it can be used to fit switching regression models to almost all types of mixed data.

  • PDF

Long Term Prediction of Korean-U.S. Exchange Rate with LS-SVM Models

  • Hwang, Chang-Ha;Park, Hye-Jung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.4
    • /
    • pp.845-852
    • /
    • 2003
  • Forecasting exchange rate movements is a challenging task since exchange rates impact world economy and determine value of international investments. In particular, Korean-U.S. exchange rate behavior is very important because of strong Korean and U.S. trading relationship. Neural networks models have been used for short-term prediction of exchange rate movements. Least squares support vector machine (LS-SVM) is used widely in real-world regression tasks. This paper describes the use of LS-SVM for short-term and long-term prediction of Korean-U.S. exchange rate.

  • PDF

Fixed size LS-SVM for multiclassification problems of large data sets

  • Hwang, Hyung-Tae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.3
    • /
    • pp.561-567
    • /
    • 2010
  • Multiclassification is typically performed using voting scheme methods based on combining a set of binary classifications. In this paper we use multiclassification method with a hat matrix of least squares support vector machine (LS-SVM), which can be regarded as the revised one-against-all method. To tackle multiclass problems for large data, we use the $Nystr\ddot{o}m$ approximation and the quadratic Renyi entropy with estimation in the primal space such as used in xed size LS-SVM. For the selection of hyperparameters, generalized cross validation techniques are employed. Experimental results are then presented to indicate the performance of the proposed procedure.

Combining Empirical Feature Map and Conjugate Least Squares Support Vector Machine for Real Time Image Recognition : Research with Jade Solution Company

  • Kim, Byung Joo
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.9 no.1
    • /
    • pp.9-17
    • /
    • 2017
  • This paper describes a process of developing commercial real time image recognition system with company. In this paper we will make a system that is combining an empirical kernel map method and conjugate least squares support vector machine in order to represent images in a low-dimensional subspace for real time image recognition. In the traditional approach calculating these eigenspace models, known as traditional PCA method, model must capture all the images needed to build the internal representation. Updating of the existing eigenspace is only possible when all the images must be kept in order to update the eigenspace, requiring a lot of storage capability. Proposed method allows discarding the acquired images immediately after the update. By experimental results we can show that empirical kernel map has similar accuracy compare to traditional batch way eigenspace method and more efficient in memory requirement than traditional one. This experimental result shows that proposed model is suitable for commercial real time image recognition system.

Multiclass LS-SVM ensemble for large data

  • Hwang, Hyungtae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.6
    • /
    • pp.1557-1563
    • /
    • 2015
  • Multiclass classification is typically performed using the voting scheme method based on combining binary classifications. In this paper we propose multiclass classification method for large data, which can be regarded as the revised one-vs-all method. The multiclass classification is performed by using the hat matrix of least squares support vector machine (LS-SVM) ensemble, which is obtained by aggregating individual LS-SVM trained on each subset of whole large data. The cross validation function is defined to select the optimal values of hyperparameters which affect the performance of multiclass LS-SVM proposed. We obtain the generalized cross validation function to reduce computational burden of cross validation function. Experimental results are then presented which indicate the performance of the proposed method.

Weighted LS-SVM Regression for Right Censored Data

  • Kim, Dae-Hak;Jeong, Hyeong-Chul
    • Communications for Statistical Applications and Methods
    • /
    • v.13 no.3
    • /
    • pp.765-776
    • /
    • 2006
  • In this paper we propose an estimation method on the regression model with randomly censored observations of the training data set. The weighted least squares support vector machine regression is applied for the regression function estimation by incorporating the weights assessed upon each observation in the optimization problem. Numerical examples are given to show the performance of the proposed estimation method.