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Weighted LS-SVM Regression for Right Censored
Data

Daehak Kim!) and Hyeong Chul Jeong?

Abstract

In this paper we propose an estimation method on the regression model with
randomly censored observations of the training data set. The weighted least
squares support vector machine regression is applied for the regression function
estimation by incorporating the weights assessed upon each observation in the
optimization problem. Numerical examples are given to show the performance of
the proposed estimation method.
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1. Introduction

The least squares support vector machine(LS-SVM), a modified version of
support vector machine(SVM) introduced by Vapnik (1995, 1998) has been
proposed for classification and regression by Suykens and Vanderwalle (1999). In
LS-SVM the solution is given by a linear system instead of a quadratic program
problem. Taking account of the fact that the computational complexity increases
strongly as the number of training data becomes larger, LS-SVM regression can
be estimated efficiently for the huge data set by using iterative methods.

The accelerated failure time model(AFT) and the least squares method to
accommodate the censored data seem appealing since they are familiar and well
understood. Koul et al (1981) gave a simple least squares type estimation
procedure in the censored regression model with the weighted observations and
also showed the consistency and asymptotic normality of the estimator. Zhou
(1992) proposed an M-estimator of the regression parameter based on the censored
data using the similar weighting scheme as Koul et al. (1981) proposed. In this
paper we consider the estimators of regression parameters and the fitted
regression function by weighted LS-SVM based on the right censored

1) Professor, Department of Statistical Information, Catholic University of Daegu, Kyungbuk
712-702, Korea.
Correspondence : dhkim@cu.ac.kr

2) Assistant Professor, Department of Applied Statistics, The University of Suwon, Suwon,
Kyunggi, Korea.



766 Daehak Kim and Hyeong Chul Jeong

observations of the training data set. The similar weighting scheme as Zhou
(1992) used and the squared error loss function are included in the optimization
problem of weighted LS-SVM. In section 2, we give an overview of LS-SVM
regression. In section 3 we suggest an estimation method on the regression model
with randomly right censored data by weighted LS-SVM. Numerical studies with
Stanford heart transplant data set were performed in section 4. Finally we give a
concluding remarks in section 5.

2. Least Squares Support Vector Machines

Let the training data set be denoted by {x;, y;}/_,, with each input x,ER? and

the output y,£R. In this section we give an overview of LS-SVM regression for

linear and nonlinear cases, respectively.
2.1 Linear regression

For the case of well known linear regression, we can assume the form of
unknown regression function f for given input vector x by
fx)=wx+b 1
where b is a bias term and w is an appropriate weight vector. LS-SVM approach
to minimizing the guaranteed risk bound for linear model leads to the optimization
problem defined with a regularization parameter v as

min,, —é—w'w-}- %T;lee? (2)
over (w,b,e) subject to equality constraints
ymwx—b=e, i=1,n (3)
where e= (e,,*,e, ). The Lagrangian function can be constructed as
L(w,b,e:a)=%ww'+%ie?— iai(w'xﬁb—f—ei—yi) (4)

i=1 i=1
where «;‘s are the Lagrange multipliers. The conditions for optimality are given
by

aL n

———:0— = X.
re=0—u=Yax,

aL n

—=0- =

% —)i;a' 0

oL .
56—l=0—->a,» =vyesi=1,mn
oL

3a, =0—-wx;+bte,—y; =0,i=1,n,
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with solution

ooy =1 ®
with  y= (y;,~,y,),1=(1,-,1),a= (a),~0,) and 2, ={x";x;}, ki=1,,n
Solving the linear equation (5) the estimators of the optimal bias and Lagrange
multipliers, b and c;[’s can be obtained. And then the estimator of the regression
parameters can be obtained as

f= E(;ix'ix-l—g (6)

i=1
2.2 Nonlinear Regression

To allow for the case of nonlinear regression, the input vectors are nonlinearly
transformed into a potentially higher dimensional feature space by a nonlinear
mapping function ¢(+ ) and then a linear regression is performed there. Nonlinear
regression function can be written as

fx)=wolx)+b (7
where b is a bias term, w is an appropriate weight vector and ¢(+) is a
nonlinear mapping function. LS-SVM approach for nonlinear model leads to the
optimization problem defined with a regularization parameter v as

min, —w w+ 2 8
over (w,b,e) subject to equality constraints

vy=wolx)—b=e, i=1,n 9
The Lagrangian function can be constructed as
L(w,b,e:a)z—ww+ 726 — Ea Jtb+e,—vy) (10)
i=1 i=1
where «;’'s are the Lagrange multipliers. The conditions for optimality are given
by
—=0—-w= Z ap(x

ow =

———0—>Za =0

i=1

oL

_— > = i ‘:1’...’

o€, 0—a;, =~ve;, 1 n

_25 =0-owolx,)+bt+e, ~y;=0,i=1,-,n,

Thus for the case of nonlinear regression, the estimators of the optimal bias and
Lagrange multipliers can be obtained by solving the linear equation
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( '

[zi Oty 11] MEH 1D
with  y= (y;,9,), 1=(1,,1),a=(ey,e,) and 02y={Ky}kl=1,2,+n,
where '

K, = ¢(xp) ¢(x).

For this nonlinear regression, solution of (11) requires the computations of dot
products ¢(x,)'¢(x,), k,l=1,-,n, in a potentially higher dimensional feature space.
Under certain conditions(Mercer, 1909), these demanding computations can be
reduced significantly by introducing a kernel function such that

¢(Xk)'¢(xz) = K(xkaxz)-
Several choices of kernel functions are possible. RBF(Radial Basis Function) is the
most frequently used kernel function. In the nonlinear case we can not obtain the
estimators of regression parameters corresponding to the nonlinear feature mapping
function of x explicitly, but the optimal nonlinear regression function for the given
x can be obtained as

Flx)= Zjlc;,;]((xi,x)+ b. (12)

i=
The linear regression model (1) can be regarded as a special case of nonlinear

regression model (7). By using an identity feature mapping function ¢(- ) in
nonlinear regression model, that is, K{x;,x,) =x,'x,, it reduces to linear regression

model.

3. Regression with Censored Data by Weighted LS-SVM

In this section we suggest an estimation method on the regression model with
randomly right censored data by weighted LS-SVM. For the suggestion, we
consider the censored linear regression model first and then extend the result of
censored linear regression model to censored nonlinear regression model.

Consider the censored linear regression model for the response variables 7}'s,

T,=0%+b+e, i=1,n,
where (8',b)" is the regression parameter vector of the model and ¢s are

unobservable errors assumed to be independent with zero means and bounded
variances. Let C;’s be the censoring variables assumed to be independent and

identically distributed having a cumulative distribution function G(y)= P(C, < y).
The parameter vector of interest is (3',b)" and 7} is not observed but
6;=Lr<.) and y; = min (7, C,),

where ., denotes the indicator function. In most practical cases G(+) is not
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known and needs to be estimated by the Kaplan-Meier estimator (1958) or its

variation, G(+). The problem considered here is that of the estimation of (3,b)’
based on (6;,9:,%1),,(6,,9,.%,). Koul et al (1981) defined a new observable

response Y, with weights f, as
Yi*= Vi &

and showed Y, has the same mean as 7, and thus follows the same linear model
as T. does. Koul et al (1981) used the variation of Kaplan-Meier estimator of
G(+),

- d{i) \1-3
Glit)=1- 1- Y
© i:J:(l;;[st( +n(2))
where n(y) is the number of alives at y~ and d(y) is the number of deaths at y
where ¥~ means just before y. The estimator of (3',b) proposed by Koul et al

(1981) is obtained from

(B,b) = arg ming ;) Y (¥ - Bx—b)>

i=1
Zhou (1992) proposed an M-estimator of the regression parameter with a general
loss function p( » Jusing the weights¢,,

(B,5) = arg min s 23¢o(Y; — Bx;—b).
i=1

We use the left continuous version of Kaplan-Meier estimator as Zhou (1992)

used,
-~ d(i) \i-s
Gt)=1- 1-—=5) " (13)
)=1- I -5
And we obtain the estimator of weights as follows:
¢ i 1 (14)
I: —_—, = ,...’n’
1- Gly;)

d; is set 1 for the maximum order statistic y(,) so that no weight is lost even if
the largest observation is censored. We apply the weighting scheme of Koul et al
(1981) to (2) with squared error loss function. Then the optimal problem of the
weighted LS-SVM can be constructed as

min— ﬂﬂ-i' o ZQ €5 (15)

1—1
with the equality constraints as
_ﬁ’xi_ b=e¢; i=1,-,n.

Thus the estimators of the optimal bias and Lagrange multipliers, b and o?,-,'s, can
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be obtained from the linear equation

0 1 b 0
1 02+~ lDiag{CA,-}“l} [a]: [Y} 16)
where
P 4; ..
2= {X in}, Ciz —f__(m’ i,j=1,,n.

Solving the above linear equation the optimal bias and Lagrange multipliers, b and
c;i’s can be obtained. And then the estimator of the regression parameters are
obtained as
n
i=1
For the censored nonlinear regression using kernel function and feature mapping
function mentioned in section 2.2, the estimators of the optimal bias and Lagrange

multipliers, b and c;i’s, are obtained by solving the following linear equation

0 1 b1_ [0
1 !2+v‘1Diag{<}}"] u— [y] (18)
‘where
N={KKxx;)}, G= TA(}G)’ i,j=1,,n.

Then the optimal nonlinear regression function for given x is predicted as

Fo) = YaKlx,x) + b. (19

i=1
4. Numerical Studies

We illustrate the performance of the LS-SVM for estimation of the survival
pattern of Stanford heart transplant data set(Miller and Halpern, 1982). Among 152
patients with complete record who survived at least 10 days were 55 censored
observations. We first consider the quadratic age model which has been considered
by Miller and Halpern (1982) in an attempt to achieve better fit of data rather
than the multiple regression model with age and T5 mismatch score. Let 7; be
the base 10 logarithm of the survival time of the ith patient. To examine the age
effect, we use the regression model as follows:

T, = Byx; + Byz: +b, (20)
where z, is the age at the first transplant time, i=1,--,152. We apply (13) and
(14) to the data to form the estimates of weights. After the estimates of the
weights are formed, the estimators of regression parameters can obtained by (16)
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and (17). The value of v in (16) was chosen as 31 by 10 fold cross-validation
with uncensored observations. To obtain better results, the entire data set can be
divided into four strata according to age: < 30, 30 to 407, 40 to 507, and = 50.
The strata contain 30, 23, 66 and 38 patients, respectively. This stratification is
known to provide more reliable result and also used by Leurgans (1987), Fygenson
and Zhou (1992). We apply (13) and (14) to each stratum to form the estimates
of weights. For the Koul et al (1981) estimator, the variation of the Kaplan-Meier
estimator of the censoring distribution is employed as they proposed (1981).
<Table 1> gives the estimators for the model with covariates age and age
squared on the stanford transplant data with 152 patients. Buckley-James
estimators in <Table 1> are from Zhou (1992, Table 1)

<Table 1> Estimated regression parameters for log,, survival times

on age and age squared.

Method Intercept Age Age squared
Buckley-James 1.353 0.1069 -0.0016700
weighted LS-SVM -0.0207403 0.1632452 -0.0022371
Zhou with p(t)=1¢* -0.0207599 0.1632584 -0.0022373
Koul et al. 0.8431440 0.0350696 -0.0001454

weighted LS-SVM(stratified) | 0.8188321 0.1236407 -0.0017934
Zhou with p(t) = t*(stratfied) | 0.8186594 0.1236501 -0.0017935
Koul et al.(stratified) 1.5989913 | -0.0115523 0.0004345

Both weighted LS-SVM estimator{(proposed) and Zhou estimator give almost same
values of regression parameters regardless of stratification.

<Figure 1> represents log,, survival times versus age for 152 Stanford heart
transplant patients under the regression model (20) without stratification(left) and
with stratification(right). In <Figure 1>, patients denoted by * are uncensored and
those by o are censored. Solid line is the weighted LS-SVM estimator, dashed
line is James-Buckley estimator and dotted line is Koul et al. estimator. The plots
of fitted values of regression functions show the estimators of weighted LS-SVM
agree quite well to the Buckley-James estimators for age 40 to 65, which was
known well fitted on this data set(Miller and Halpern, 1982). The Koul et al
estimator contradicts the fact that younger patients had a better survival after
transplant than older patients(Miller and Halpern, 1982), stratification does not
resolve this discrepancy remarkably. While weighted LS-SVM estimator is less
sensitive than Koul et al estimator against the stratification.
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<Figure 1> Scatter plot of log,, survival times versus age with model (20).

(left = without stratification, right = with stratification)

Now we consider the multiple regression model including T5 mismatch score
which was deleted from the quadratic age model due to its nonsignificance(Miller
and Halpern, 1982) as follows:

T, = B1xq; + By + b, (21)
where z,; is the age at the first transplant time and z,, is the T5 mismatch
score, 1 =1,-+,157. Here each of 157 patients has complete record of age and TH
mismatch score. <Table 2> gives the estimators for the model with covariates age
and T5 mismatch score on the Stanford transplant data with 157 patients.
Buckley-James estimator and weighted LS-SVM estimator agree in a sense that
the age effect on survival is relatively larger than that of T5 mismatch score, but
other estimators show it reversely.

<Figure 2> represents log,, survival times versus age for 157 Stanford heart
transplant patients under the regression model (21) without stratification and with
stratification, respectively. In <Figure 2> we can see the Koul et al estimator
contradicts the fact that younger patients had a better survival after transplant
than older patients(Miller and Halpern, 1982). Buckley-James estimator exceeds
most of data at the low values of age, this implies the nonlinear regression model
may describe the age effect better than the linear regression model.
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<Table 2> Estimated regression parameters for log,, survival times

on age and T5 mismatch score.

Method Intercept Age T5 mismatch
score
Buckley-James 0.35 -0.015 -0.003
weighted LS-SVM 2.5912889 | -0.0000092 | -0.0000015
Zhou with p(t)=1¢ 3.0391097 | -0.0043546 | -0.2544753
Koul et al. 0.7144260 0.0237964 0.2475615
weighted LS-SVM(stratified) | 2.5809569 | -0.0000176 | -0.0000012
Zhou with p(t):tQ(stratﬁed) 3.1300610 | -0.0082401 -0.1954170
Koul et al.(stratified) 0.8204691 0.0211247 0.1534609
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<Figure 2> Scatter plot of log;, survival times versus age with model (21).

(left = without stratification, right = with stratification)

We now consider the nonlinear regression model as follows:

T, =F¢x)+b, (22)
where x;= (z;,%,;) with z,; the age at the first transplant time and z,; the T5
mismatch score, ¢ =1,-,157. ¢(+ ) is the nonlinear feature mapping function such
that ¢(x,) ¢(x,)=K(x;,x;), where K(+,+) is the kernel function defined in section
2.2. For this data set, we use the polynomial kernel function A(x,x;) = (1+x,'x))*

The value of v is chosen as 0.0015 by the 10 fold cross-validation method with
uncensored observations. <Figure 3> represents log;, survival times versus age
for 157 Stanford heart transplant patients under the regression model (22) without
stratification and with stratification, respectively. In <Figure 3> we can see the
nonlinear LS-SVM estimator gives the similar age effect pattern which appeared
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in the regression model (20).
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<Figure 3> Scatter plot of log,, survival times versus age with model (22).

(left = without stratification, right = with stratification)

Now consider the censored nonlinear regression model for the response variables
T:'s of the form,
T,=f(z,)+e, i=1,,n (23)
For the data set, 200 of z's are generated from a uniform distribution 77(0,1)
and 200 of (t,¢)'s are generated from the function 0.5+ sin(0.757z). Errors were
generated from the double exponential distributions with scale parameter 3.
Censoring proportion cc is also chosen as 10%, 25%, and 50% respectively. The
radial basis function(RBF) kernel is used for the numerical studies, which is
defined as ‘
K(z,,z,) = exp|— —2—1—-(:% —z,)%].
The values of v and o in RBF kernel are chosen by the 10 fold cross-validation
method with uncensored observations in each generated data set. Solving the
linear equation (18) with the data set, the estimators of the optimal Lagrange
multipliers and bias, c;i’s and b, can be obtained. Then by the equation (19) the
fitted regression function is obtained.

To measure the performance of estimating regression function, we employ the
fraction of variance unexplained(FVU), which is given by

E(f(z,)"?($))2 ’

where f(x,) is the fitted value of the function for a given x, f(x,) is the true

FVU=
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value of the function for a given x; and ?(x) is the average of true values of the
function for x;,--x,. Note that the FVU is the mean squared error for the

estimate f(x) scaled by the variance of the true function f(x). We evaluate the
FVU by replacing the expectations with the average over a set of 200 test set
values. With optimal Lagrange multipliers and bias obtained from the training data
set, we have the fitted regression functions for each of 100 data sets, thus 100
FVUs from 100 data sets.

<Table 3> shows the averages and the root mean squared errors(RMSE) of the
100 FVUs obtained by weighted LS-SVM for the fitted regression functions
according to various censoring proportions.

<Table 3> The average and RMSE of 100 FVUs according to various
censoring proportions

10% 25% 50%
Average ~0.0053 0.0111 0.0289
RMSE 0.0037 0.0059 0.0176

The <Figure 4> shows scatter plots of response variables versus explanatory
variables for 200 data and estimated regression lines with 10% and 50% censoring
proportion, respectively. Data points denoted by * are uncensored and those by o
are censored. Solid line is the true regression function, dashed line is the fitted
regression function by weighted LS-SVM. The fitted values look close to the true
regression functions in this nonlinear model as in linear model for z's from the
data set even though more than 25% censoring proportion. For the case of
nonlinear regression model, it is hard to find a regression method on the censored
data set to compare with the proposed method.

2.%

L L n L L " L L L L : L L L L L .
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x x

<Figure 4> Scatter plots and estimated regression lines.
(left = 10% censoring proportion, right = 50% censoring proportion)
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5. Concluding Remarks

Through the numerical studies, we showed that the proposed method using
weighted LS-SVM provides a satisfying solutions to the right censored linear
regression model and the censored nonlinear regression model, respectively.
Particularly for the censored nonlinear regression model, the proposed method can
be used without heavy computations and provides a satisfying result. In future
work, we consider to devise algorithms for predicting intervals of regression
function based on the training data set which might be randomly right censored,
by using weighted LS-SVM or the other efficient machine learning methods.
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