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Abstract

In this paper we propose an on line training method for classification based on least
squares support vector machine. Proposed method enables the computation cost to be
reduced and the training to be performed incrementally. With the incremental
formulation of an inverse matrix in optimization problem, current information and new
input data can be used for building the new inverse matrix for the estimation of the
optimal bias and Lagrange multipliers, so the large scale matrix inversion operation
can be avoided. Numerical examples are included which indicate the performance of
proposed algorithm.
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1. Introduction

Support vector machine(SVM), introduced by Vapnik(1995, 1998) and coworkers, has
experienced rapid development. Despite of many successful application of SVM in classification
and function estimation problem, SVM requires to solve a quadratic programming(QP) problem
which is time memory expensive. Suykens and Vanderwalle(1999) proposed a modified version
of SVM in a least squares sense for classification. In least squares support vector
machine(LS-SVM), the solution is given by a linear system instead of a QP problem. The
fact that LS-SVM has explicit primal-dual formulations has an advantage of fast computation.
Furthermore it is easy to formulate modified version such as the weighted LS-SVM for the
robust estimation(Suykens et al, 2002). But the proposed LS-SVM algorithm is trained in
batch form, which is not suited to the real application such as on line system identification
and control, where the data come in sequentially. So the on line training for the classification
is needed urgently in real application.

1) This research was supported by the Catholic University of Daegu Research Grant in 2003

2) Professor, Department of Statistical Information, Catholic University of Daegu, Kyungbuk, 712-702,
Korea. Email : dhkim@cu.ac kr

3) Professor, Department of Statistical Information, Catholic University of Daegu, Kyungbuk, 712-702,
Korea. Email : ohkwang@cu.ac.kr

4) Adjunct Professor, Department of Statistical Information, Catholic University of Daegu, Kyungbuk,
712-702, Korea. Email : jyshim@cu.ac.kr

- 595 -



596 Daehak Kim, Kwangsik Oh, Jooyong Shim

Ahmed et al(1999) has brought forth an incremental training algorithm for SVM
classification. The basic idea is that only the support vectors are preserved, and those support
vectors plus the new coming data are used for training again. The main drawback is that the
training is not exactly incremented. It is approximately incremental and the Lagrange
multipliers corresponding to the support vectors are not updated incrementally. Cauwenberghs
and Poggio(2001) proposed the exact incremental and decremental training for SVM
classification. Friess et al.(1999) proposed a sequential gradient method for SVM, where the
main problem is that the training is not convergent quickly.

In this paper we propose the exact on line(incremental) training for LS-SVM classification,
which makes the on line LS-SVM applied for system identification and control possible. In
Section 2 we give an overview of LS-SVM classification. In Section 3 we present the on
line LS-SVM for classification. In Section 4 we performm the numerical studies with simuleted
data set and real data set. In Section 5 we give the remarks and conclusions.

2. LS-SVM for classification

Let the training data set D be denoted by { %, v, )}’ , with each input x; € R and the
output v, which is the binary class labels such that y; € {—1, +1}. The LS-SVM classifier
takes the form

flx)=sgn( w'é( x)+b)

. . . . d
where the term & is a bias term. Here the feature mapping function ¢( - YRR maps
the input space to the higher dimensional feature space where the dimension d; is defined in
an implicit way.

The optimization problem is defined with a regularization parameter C as

Minimize — w’' w + —g— ﬁle% 1
£

over { w, b, e} SUbjeCt.to equality constraints
yi(w x)+b=1—e;, i=1,--,N.

The Lagrangian function can be constructed as

L( w,b,e:a)=—§ w w + 7(" ﬁ‘e?— g‘ai(y,-( welx)tb—1+e;) 2)
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where a;'s are the Lagrange multipliers. The conditions for optimality are given by

_ﬂ‘_=0—) w=ﬁ|aiy1¢(xi)

ow

—%%=0 — ﬁla’zyi:o

’% ~0 — a;=Ce;, i=1,+,N

gcf =0 =y weé¢(x)+b—1+te,=0, i=1,--,N,

with solution

0 y’ ] b1 _ [0
1% evtlla] = (1] ®
with  y=(y,,,y8", 1=Q1,.1), a=(a,,ay), and Q=82, where 2,=

v (x ) o(x )=v,v,K(x4 x), k,I=1,-,N, which are obtained from the

application of Mercer's conditions(1909). Several choices of the kernel K(:, ) are possible.

For Examples,

Klxg,x)=(xyx,),
Kxp,x)=(xix,+1)°

K(xy, x1) = exp {—|l(x,— 2 )II*/(20%}, and
K(x,,x,;)= tanh {kx; x,+ 9}.

are can be used as kernel function.

Solving the linear equation (3) the optimal bias and Lagrange multipliers, D and @ /'S

can be obtained, then the optimal target value for the given x is obtained as

f( x)= sgn( gl/& ,-y,-K(x, x,-) + /B) (4)

Note that in the nonlinear setting, the optimization problem corresponds to finding the
flattest function in the feature space, not in the input space.
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3. On line LS-SVM for classification

Consider that we have built LS-SVM model based on first N data and that now the n=w
data {x N1,V N+1} is coming in. Denote the equation (3) by Ay a = Ry , where “he

subscript N indicates that the current model is based on the first N pairs of data. Then the

optimal Lagrange multipliers and bias based on first N pairs of data are obtained from
anN— A;]lRN such that a N=(77\,/(\? 1» /C\lfz,"', /C\l' N)'-

For N+ 1 pairs of data, we have

an+1= Ay Ry (5)

where

A Ne= [ sz bcl ] , by=1b, C=K(JCN+1, xN+1)+%, Ry = [RlN] and

b,= (J’N+1, y13’N+1K( X1, X N+1), J’ZyN+1K( X9, X N+1),'“, yNyN+1K( XN X N+1) ).

We can have a inverse matrix of the form

A l= [ [Ay—ApAg Ay 17! ATAp[ApAR T A=Al T ©)
[Ay—AzA 11_1A 2] TAnA 0t [Ap—AjuA n AR
. A, A
for some matrix A = 1 12] and
' " [AmAJ
(A+BCD) '=A'—A7'B(C'+DA'B) "'DA! (7)

from Muirhead(1982). According to the equation (6), the inverse matrix of A y4; can 2e

changed into

At _1—[AN bi] — [ [AN“lzblbz] ! AN [ A0~ 7! ®)

ba el b Ante—c " 0sAN"  Le—byA bl

Applying the equation (5) to the upper left submatrix in the equation (8), we have
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-1
[AN_—};ble] =Ay '=Ay o[ et b A0 T AN T 9)

Let 6= [c—b,Ay _1b1] ~! then the equation (8) can be changed into
-1 -1
A Nty _1=[A8' (1)]+3[AN_1b1] [624,7 ~1] (10)

With the equation (10) the inversion of matrix is computed through an incremental form,
which avoids expensive inversion operation. Thus we can compute the equation (5) to get the

optimal Lagrange multipliers @ b a 2, ‘o N+1 and bias b based on Ay and

{ £ yr1, ¥ y+; Ywithout inverting A y,, directly. Then we get the on line formulation for

L5-SVM for classification.
4. Numerical studies

We illustrate the performance of the proposed algorithm through two data sets -
two-spiral data set(simulated data) and Iris data set(real data). The radial basis kernel
function with several values of bandwidth parameter ¢ and the regularization parameter C =
200 are used for the numerical studies. The data points are added one by one and the
corresponding Lagrange multipliers and bias are updated every time for the test of incremental
formulation in the equation (10).
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[Figure 1] Plot of Two-Spiral data set.

The two-spiral data set is the benchmarking data set for the classification and known to be
hard for the multi-layer perceptron. The training data with two classes indicated with
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different labels are in two dimensional input space. The data set of 200 data points are
generated as shown in figure 1. In figure 1, the points indicated by ‘o’ and '*’ are the training
data for the binary classes. Each 100 data points are used for the training data set and test data
set respectively.

The Iris data set consists of four measurements made on each of 150 flowers. There are
three pattern classes - Virginica, Setosa, and Versicolor - corresponding to three different
types of Iris. In this case, the reference set consists of 150 feature vectors in 4 space each of
which is assigned to one of three classes. In this numerical study, we choose 50 data points
of the two classes - Virginica and Setosa - for the training data set and 50 data points for
the test data set. Table 1 shows the number of misclassifications for both data sets by the on

line and the batch LS-SVM according to the values of ¢
5. Remarks and Conclusions

From the numerical study, we can note the proposed on line classification algorithm derives
the satisfying results, whose performance is comparative to the batch algorithm but avoiding a
large scale matrix inversion operation, which is an attractive approach to modelling the training
data set for large data set.

The on line LS-SVM classification example showed in this paper is limited for the case of
binary classification. In future work, we intend to devise the on line LS-SVM applicable to
the multi class problem.

[Table 1] The number of misclassifications.

data set o 02 105 1075 1.0
On line 0 0 0 0

Spiral data
Batch 0 0 Q 2
On line 1 0 0 0

Iris data
Batch 0 0 0 0
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