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요 약

Multiclassification is typically performed using voting scheme methods based on
combining a set of binary classifications. In this paper we use multiclassification method
with a hat matrix of least squares support vector machine (LS-SVM), which can be
regarded as the revised one-against-all method. To tackle multiclass problems for large
data, we use the Nyström approximation and the quadratic Renyi entropy with esti-
mation in the primal space such as used in fixed size LS-SVM. For the selection of
hyperparameters, generalized cross validation techniques are employed. Experimental
results are then presented to indicate the performance of the proposed procedure.

Keywords: Fixed size least squares support vector machine, generalized cross validation,
multiclass, Nyström approximation, quadratic Renyi entropy.

1. Introduction

Many real applications consist of multiclass problems. Support vector machine (SVM)
was originally designed by Vapnik (1995) for binary classification. SVM is gaining popular-
ity due to many attractive features and promising empirical performance. Extending it to
multiclass problems is an ongoing research issue. There are commonly two types of multi-
class extensions for SVM. One is the composition type methods built on a series of binary
classification methods such as the one-against-one, one-against-all and error correcting out-
put codes (Allwein et al., 2000; Dietterich and Bakiri, 1995), and the other is the single
machine type methods, which attempt to construct a multiclass classifier by solving a single
optimization problem (Vapnik, 1998; Weston and Watkins, 1998; Lee et al., 2001). There is
no substantial agreement on which method is the best one for the multiclass problem (Rifkin
and Klautau, 2004).

Despite of many successful application of SVM in classification and regression problem,
training an SVM requires to solve a quadratic program (QP) problem. The QP is to optimize
a quadratic function over a polyhedron, defined by linear equations and/or inequalities,
which is time memory expensive. Suykens and Vanderwalle (1995) proposed LS-SVM for
binary classification. Its solution is given by a linear equation system instead of a QP
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problem. LS-SVM keeps explicit primal-dual formulations which has lots of advantages.
Suykens and Vanderwalle (1999) proposed an extension of LS-SVM to the multiclass case.
In stead of QP, some other techniques such as iterative reweighted least squares technique
and Newton-Raphson method have been used in kernel machines. See Hwang (2007, 2008),
Shim and Seok (2008) and Shim et al. (2009) for details.

Espinoza et al. (2005) proposed the fixed size LS-SVM for large scale regression problems
by using the sparse approximation of nonlinear feature mapping function induced by kernel
function, whose computation is based on the Nyström approximation (Williams and Seeger,
2001) and the quadratic Renyi entropy (Girolami, 2003).

In this paper we propose an LS-SVM solving multiclass problems of large data sets with
fixed size LS-SVM regression. This method implements one-against-all scheme which is as
accurate as any other approach, which can be considered as the extension of the multiclass
LS-SVM (Shim et al., 2008) to the large data problem. We also derive the generalized cross
validation (GCV) function to select the hyperparameters which affect the performance of the
proposed multiclass LS-SVM method. The rest of paper is organized as follows. In Section
2 we briefly illustrate LS-SVM regression and its relationship to LS-SVM classification. In
Section 3 we describe LS-SVM regression for multiclassification. In Section 4 we propose
multiclass LS-SVM for large data and GCV function for model selection. In Section 5 we
perform the numerical studies with real data sets. In Section 6 we give the conclusions.

2. LS-SVM

LS-SVMs have been successfully applied to static problems like classification and function
estimation. LS-SVMs have been extended to recurrent models and used in optimal control
problems. See for further details Suykens and Vanderwalle (1995, 1999) and Suykens (2001).
In this section we review some basic idea of LS-SVM regression. We also illustrate LS-SVM
classification is actually equivalent to LS-SVM regression in binary classification case.

The LS-SVM model for regression estimation has the following representation in feature
space

y(x) = wtΦ(x) + b, (2.1)

where x ∈ Rd, y ∈ R, and w ∈ Rdf is a weight vector corresponding to Φ(x). The use of
the nonlinear mapping Φ(·) is similar to the classifier case.

Given a training data set {xi, yi}ni=1 with each input xi ∈ Rd and corresponding output
yi ∈ R, we consider the following optimization problem in primal weight space:

L(w, b, e) =
1

2
wtw +

γ

2

n∑
i=1

e2
i (2.2)

subject to equality constraints

yi = wtΦ(xi) + b+ ei, i = 1, · · · , n. (2.3)

The cost function with squared error and regularization corresponds to a form of ridge
regression. To find minimizers of the objective function, we can construct the Lagrangian
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function as follows:

L(w, b, e;α) =
1

2
wtw +

γ

2

n∑
i=1

e2
i −

n∑
i=1

αi(w
tΦ(xi) + b+ ei − yi), (2.4)

where αi’s are the Lagrange multipliers. Then, the conditions for optimality are given by

∂L

∂w
= 0→ w =

n∑
i=1

αiΦ(xi)

∂L

∂b
= 0→

n∑
i=1

αi = 0 (2.5)

∂L

∂ei
= 0→ ei =

1

γ
αi, i = 1, · · · , n

∂L

∂αi
= 0→ yi − b−wtΦ(xi)− ei = 0, i = 1, · · · , n

After eliminating ei and w, we could have the solution by the following linear equations[
K + 1

γ In 1n
1tn 0

] [
α
b

]
=

[
y
0

]
, (2.6)

where 1n is the n × 1 vector of ones and K is the n × n kernel matrix with elements
K(xi,xj) = Φ(xi)

tΦ(xj), i, j = 1, · · · , n.
Solving the linear equation (2.6), the optimal bias b and Lagrange multipliers αi’s are

obtained, and then the optimal regression function for a test data point x∗t is obtained as

ŷ(x∗t ) =

n∑
i=1

K(x∗t ,xi)αi + b. (2.7)

Note that it can be easily shown that Lagrange multipliers of LS-SVM for binary classifica-
tion are identical to Lagrange multipliers of LS-SVM for regression obtained from equation
(2.6), when class labels are -1 and 1. That is, if y consists of class labels -1 and 1, ŷ obtained
by LS-SVMs for regression and classification are identical. Thus, for the binary classifica-
tion, each observation of the test data can be classified into either class according to the
sign of ŷ(x∗t ) in equation (2.7) for t = 1, · · · , nt. See for details Shim et al. (2008). We
use LS-SVM for regression, instead of LS-SVM for classification, to approximate the cross
validation function of multiclass LS-SVM.

3. Multiclass LS-SVM

3.1. One-against-all multiclass LS-SVM

In this section we give simple overview on multiclassification by LS-SVM using one-against-
all method (Shim et al., 2008) which uses the fact that LS-SVM classification is equivalent
to LS-SVM regression for binary classification case.

Let the training data set be denoted by {xi, yi}ni=1 with each input vector xi ∈ Rd and the
class label yi ∈ {1, 2, · · · ,m}, where m is the number of classes. One-against-all multiclass
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LS-SVM regression constructs m binary LS-SVM regressor, each of which separates one class
from all the rest. The jth LS-SVM regressor is trained with all the training examples of the
jth class with positive labels, and all the others with negative labels. Thus, for one-against-
all multiclass LS-SVM regression, we transform y into n×m matrix Y which consists of −1
and 1 such that Yij = 1 and Yik = −1 for j 6= k implies ith example belongs to the jth class.
We have m LS-SVM regressors for binary classification with {xi, Yij}ni=1 for j = 1, · · · ,m.

From the linear equation system[
K + 1

γ In 1n
1tn 0

] [
αj

bj

]
=

[
Y ·j
0

]
, (3.1)

the optimal bias bj and Lagrange multipliers αji ’s are obtained. Here Y ·j is the jth column
of Y .

For a test data point x∗t , we have

Ŷtj(x
∗
t ) =

n∑
i=1

K(x∗t ,xi)α
j
i + bj , for t = 1, · · · , nt. (3.2)

Thus, if Ŷtj(x
∗
t ) > 0 and Ŷtk(x∗t ) < 0 for k 6= j, then the test data point x∗t is classified

into the jth class for t = 1, · · · , nt.

3.2. Multiclass LS-SVM using hat matrix

In this section we use the hat matrix for the test data to avoid solving linear equations in
equation (3.1). We denote the sets of xi’s and x∗t ’s by X and Xt, respectively. For conve-

nience we will use some notations such as Ŷ ·j(Xt), Ŷ (Xt),S(Xt,X ), Φ̂(X ) to denote vectors
or matrices constructed based on X and Xt. For Kt = {Ktl} with Ktl = K(x∗t ,xl), t =
1, · · · , nt, l = 1, · · · , n, we can rewrite equation (3.2) as follows:

Ŷ ·j(Xt) = Ktα
j + bj1nt = [Kt,1nt ]

[
αj

bj

]
= [Kt,1nt ]

[
S11 s12

s21 s22

] [
Y ·j
0

]
(3.3)

= (KtS11 + 1nts21)Y ·j = S(Xt,X )Y ·j , j = 1, · · · ,m,

where S11 consists of first n rows and first n columns of inverse of the leftmost matrix in
equation (3.1) and s21 consists of the last row and first n columns of inverse of the leftmost

matrix in equation (3.1). Note that Ŷ ·j(Xt) = (Ŷ1j(x
∗
1), · · · , Ŷntj(x∗nt))

t.

Since S(Xt,X ) does not depend on Y ·j , we can write the predicted Ŷ (Xt) as,

Ŷ (Xt) = S(Xt,X )Y , (3.4)

where Ŷ (Xt) = (Ŷ ·1(Xt), · · · , Ŷ ·m(Xt)) is an nt×m matrix. Thus, we need not to solve m
linear equations in equation (3.1) but once for given S(Xt,X ).

4. Multiclass LS-SVM for large data

4.1. Multiclassification by fixed size LS-SVM

For large data (large n), it is not possible to obtain the estimator of parameter vector from
equation (3.1) since it is not computable to find the inverse of a (n+ 1)× (n+ 1) matrix.
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We consider the extension of the multiclass LS-SVM to the large data problem. In fixed
size LS-SVM (Espinoza et al., 2005) the Nyström approximation and the quadratic Renyi

entropy are used to obtain the approximate of the feature mapping function, Φ̂(X ), which
is a n× ns matrix with ns(<< n) the specified number of support vectors,

Φ̂(X ) ∝K(X ,Xs)ED−1/2, (4.1)

where Xs are the set of support vectors chosen by using the quadratic Renyi entropy, E is the
matrix composed of eigenvectors ofK(Xs,Xs) andD is the diagonal matrix of eigenvalues of

K(Xs,Xs). From the approximate of the feature mapping function, Φ̂(X ), computed based
on the subsample, the model is estimated in the primal space.

In the multiclass LS-SVM for large data we have the ridge estimate of the jth column of
Y , j = 1, · · · ,m, from (2.3) as

Ŷ ·j = (Φ̂(X ),1n)

[
Φ̂(X )tΦ̂(X ) + 1

γ I Φ̂(X )t1n

1tnΦ̂(X ) n

]−1 [
Φ̂(X )t

1t

]
Y ·j

= S(X ,X )Y ·j , (4.2)

where Y ·j is the jth column of Y . For the test data set Xt,

Ŷ ·j(Xt) = (Φ̂(Xt),1nt)

[
Φ̂(X )tΦ̂(X ) + 1

γ I Φ̂(x)t1nt
1tntΦ̂(x) n

]−1 [
Φ̂(X )t

1tnt

]
Y ·j

= S(Xt,X )Y ·j . (4.3)

4.2. Model selection

The functional structure of multiclass LS-SVM is characterized by hyperparameters, the
regularization parameter and the kernel parameters. To select the parameters of multiclass
LS-SVM, we define the cross validation (CV) function as follows:

CV (λ) =
1

n

n∑
i=1

(
Yimi − Ŷ

(−i)
imi

(λ)
)2

, (4.4)

where λ is the set of hyperparameters and Ŷ
(−i)
imi

(λ) is the predicted value of Yimi obtained
from the data without ith observation. Here mi is the column number of the ith row of Y
such that Yimi = 1, which implies that the ith observation belongs to the mith class. The
CV can be rewritten as

CV (λ) =
1

n

n∑
i=1

(
1− Ŷ (−i)

imi
(λ)
)2

. (4.5)

Since for each candidate of hyperparameters, Ŷ
(−i)
imi

(λ) for i = 1, · · · , n should be evalu-
ated, selecting parameters using CV function is computationally formidable.

By leaving-out-one lemma (Kimeldorf and Wahba, 1971) and the first order Taylor ex-
pansion, we have

Yimi − Ŷ
(−i)
imi

(λ) ≈ Yimi − Ŷimi
1− ∂Ŷimi

∂Yimi

and Ŷimi = Si·Y ·mi , (4.6)
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where Si· for i = 1, · · · , n is the ith row of the hat matrix S(X ,X ) in equation (4.2). Then
the ordinary cross validation (OCV) function can be obtained as

OCV (λ) =
1

n

n∑
i=1

(
1− Ŷimi(λ)

1− sii(λ)

)2

. (4.7)

where sii for i = 1, · · · , n, is the ith diagonal element of the hat matrix S(X ,X ).
By replacing sii’s in equation (4.7) with their average tr(S(X ,X ))/n, the generalized cross

validation (GCV) function can be then obtained as follows:

GCV (λ) =
n
∑n
i=1

(
1− Ŷimi(λ)

)2

(n− tr(S(X ,X )))
2 . (4.8)

5. Numerical studies

We illustrate the performance of the proposed procedure through the data sets avail-
able from UCI Machine Learning Depository (http://kdd.ics.uci.edu), which are the vowel-
recognition data set extracted from the letter-recognition and the satellite data set. The
Gaussian kernel is used in these examples, which is defined as

K(xk,xl) = e−
‖xk−xl‖2

σ2 , (5.1)

where σ2 is the kernel parameter.
The vowel-recognition data set of 5 classes (5 vowels) has 16 variables and 3491 observa-

tions. We randomly divided it into training data set of size 2000 and test data set of size
1491. To illustrate the effect of prespecified number of support vectors, multiclass LS-SVM
is tested for ns = 20, 40, 60, 80 (1% ∼ 4% of training data). The optimal values of (γ, σ2)
are chosen from GCV function as (1,57), (1,42), (1,48) and (1,32), respectively.

The satellite data set of 6 classes has 16 variables, 4435 observations in the training data
set and 2000 observations in the test data set. Multiclass LS-SVM is tested for ns = 45, 90,
135, 180(1% ∼ 4% of training data). The optimal values of (γ, σ2) are chosen from GCV
function as (1,66), (1,38), (1,31) and (1,33), respectively. Table 5.1 shows the performance
of the proposed method on the test data sets for various numbers of support vectors. From
the results of two examples we can see that the larger numbers of support vectors provide
the smaller misclassification error rates.

Table 5.1 Misclassification error rates of the test data sets for various numbers of support vectors.

Vowel data Satellite data
support vectors error rate support vectors error rate

20 0.0885 45 0.1635
40 0.0570 90 0.1365
60 0.0376 135 0.1245
80 0.0335 180 0.1195
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6. Conclusions

In this paper, we dealt with a multiclassification for a large scale data problem, in which
we showed that it is possible to catch the structure of whole data with a small portion of
data(support vectors). Through the examples we showed that the proposed method derives
the satisfying results by using small number of support vectors and the accuracy increases
with larger numbers of support vectors. We also found that the results are not much affected
by the value of the regularization parameter but the kernel parameter.
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