본 논문은 그래핀의 모드 I 균열 진전에 대한 분자동역학 해석과 수치보조장을 사용하는 영역 투영 방법의 역문제 해석 방법을 결합하여 균열 선단 응집 법칙을 평가하는 효율적인 방법을 제시하고 있다. 그래핀의 균열 선단 응집 법칙을 결정하는 것은 균열 선단에서 멀리 떨어진 영역의 변위를 사용하여 균열 면에서 미지의 응집 트랙션과 열림 변위를 구하는 역문제를 해석해야 하는데 상호 J-적분과 M-적분의 경로 보존성과 효율적인 수치보조장을 사용하는 방법을 적용하였다. 분자동역학 해석에서 원자 변위를 유한요소 절점 변위로 이동최소자승법을 사용하여 근사하였으며 안정적인 역문제 해석을 통하여 원자 단위의 거동을 연속체 해석으로 연결시킬 수 있는 새로운 방법을 보여주었다.
본 논문에서는 MCNS(Multimedia Cable N$\xi$twork System)의 DOCSIS(Data Over Cable Service Interface S Specification) 표준안의 물리계층을 지원하는 비대칭형 기저대역 모댐 ASIC 칩의 아키텍쳐와 설계에 대해 기술한다. 구현한 모뎀 칩은 크게 QPSK/16-QAM 방식의 상향 스트림용 송신부와 64/256-QAM 방식의 하향 스트림용 수신부로 구성되어 있으며, 심볼 타이밍 복구회로, 반송파 복구회로. MMA(Multi Modulus Algorithm)와 LMS(Least Mean Square) 알고리즘을 적용한 결정 궤환 구조의 블라인드 등화기를 포함한다. 구현한 모뎀 칩은 64/256-QAM 변복조 방식에서 각각 48Mbps, 64Mbps의 데이터 전송률을 지원하고, 심볼 전송률은 기존의 QAM 수신기들보다 빠른 8MBaud를 갖는다. 구현한 칩은 $0.35\mu\textrm{m}$ 표준 셀(Standard Cell) 라이브러리를 사용하여 논리합성을 수행하였으며, 총 게이트 수는 약 29만 게이트이며, 현재 ASIC 칩으후 제작중이다.
A microphone for fully implantable hearing device was generally implanted under the skin of the temporal bone. So, the implanted microphone's characteristics can be affected by the accompanying noise due to masticatory movement. In this paper, the implantable microphone with 2-channels structure was designed for reduction of the generated noise signal by masticatory movement. And an experimental model for generation of the noise by masticatory movement was developed with considering the characteristics of human temporal bone and skin. Using the model, the speech signal by a speaker and the artificial noise by a vibrator were supplied simultaneously into the experimental model, the electrical signals were measured at the proposed microphone. The collected signals were processed using a general adaptive filter with least mean square(LMS) algorithm. To confirm performance of the proposed methods, the correlation coefficient and the signal to noise ratio(SNR) before and after the signal processing were calculated. Finally, the results were compared each other.
In this study, we propose a design of digits recognition system based on RBFNNs through a comparative study of pre-processing algorithms in order to recognize digits in handwritten. Histogram of Oriented Gradient(HOG) is used to get the features of digits in the proposed digits recognition system. In the pre-processing part, a dimensional reduction is executed by using Principal Component Analysis(PCA) and (2D)2PCA which are widely adopted methods in order to minimize a loss of the information during the reduction process of feature space. Also, The architecture of radial basis function neural networks consists of three functional modules such as condition, conclusion, and inference part. In the condition part, the input space is partitioned with the use of fuzzy clustering realized by means of the Fuzzy C-Means algorithm. Also, it is used instead of gaussian function to consider the characteristic of input data. In the conclusion part, the connection weights are used as the extended type of polynomial expression such as constant, linear, quadratic and modified quadratic. By using MNIST handwritten digit benchmarking database, experimental results show the effectiveness and efficiency of proposed digit recognition system when compared with other studies.
In this study, the design methodology for alleviating the overfitting problem of Polynomial Neural Networks(PNN) is realized with the aid of two kinds techniques such as L2 regularization and Sum of Squared Coefficients (SSC). The PNN is widely used as a kind of mathematical modeling methods such as the identification of linear system by input/output data and the regression analysis modeling method for prediction problem. PNN is an algorithm that obtains preferred network structure by generating consecutive layers as well as nodes by using a multivariate polynomial subexpression. It has much fewer nodes and more flexible adaptability than existing neural network algorithms. However, such algorithms lead to overfitting problems due to noise sensitivity as well as excessive trainning while generation of successive network layers. To alleviate such overfitting problem and also effectively design its ensuing deep network structure, two techniques are introduced. That is we use the two techniques of both SSC(Sum of Squared Coefficients) and $L_2$ regularization for consecutive generation of each layer's nodes as well as each layer in order to construct the deep PNN structure. The technique of $L_2$ regularization is used for the minimum coefficient estimation by adding penalty term to cost function. $L_2$ regularization is a kind of representative methods of reducing the influence of noise by flattening the solution space and also lessening coefficient size. The technique for the SSC is implemented for the minimization of Sum of Squared Coefficients of polynomial instead of using the square of errors. In the sequel, the overfitting problem of the deep PNN structure is stabilized by the proposed method. This study leads to the possibility of deep network structure design as well as big data processing and also the superiority of the network performance through experiments is shown.
Kim, Hyun Cheol;Yim, Dong-Gyun;Kim, Ji Won;Lee, Dongheon;Jo, Cheorun
한국축산식품학회지
/
제41권2호
/
pp.312-323
/
2021
The purpose of this study was to use 1H nuclear magnetic resonance (1H NMR) to quantify taste-active and bioactive compounds in chicken breasts and thighs from Korean native chicken (KNC) [newly developed KNCs (KNC-A, -C, and -D) and commercial KNC-H] and white-semi broiler (WSB) used in Samgye. Further, each breed was differentiated using multivariate analyses, including a machine learning algorithm designed to use metabolic information from each type of chicken obtained using 1H-13C heteronuclear single quantum coherence (2D NMR). Breast meat from KNC-D chickens were superior to those of conventional KNC-H and WSB chickens in terms of both taste-active and bioactive compounds. In the multivariate analysis, meat portions (breast and thigh) and chicken breeds (KNCs and WSB) could be clearly distinguished based on the outcomes of the principal component analysis and partial least square-discriminant analysis (R2=0.945; Q2=0.901). Based on this, we determined the receiver operating characteristic (ROC) curve for each of these components. AUC analysis identified 10 features which could be consistently applied to distinguish between all KNCs and WSB chickens in both breast (0.988) and thigh (1.000) meat without error. Here, both 1H NMR and 2D NMR could successfully quantify various target metabolites which could be used to distinguish between different chicken breeds based on their metabolic profile.
The purpose of this study is to use machine learning to build a model capable of predicting the flash boiling spray characteristics. In this study, the flash boiling spray was visualized using Shadowgraph visualization technology, and then the spray image was processed with MATLAB to obtain quantitative data of spray characteristics. The experimental conditions were used as input, and the spray characteristics were used as output to train the machine learning model. For the machine learning model, the XGB (extreme gradient boosting) algorithm was used. Finally, the performance of machine learning model was evaluated using R2 and RMSE (root mean square error). In order to have enough data to train the machine learning model, this study used 12 injectors with different design parameters, and set various fuel temperatures and ambient pressures, resulting in about 12,000 data. By comparing the performance of the model with different amounts of training data, it was found that the number of training data must reach at least 7,000 before the model can show optimal performance. The model showed different prediction performances for different spray characteristics. Compared with the upstream spray angle and the downstream spray angle, the model had the best prediction performance for the spray tip penetration. In addition, the prediction performance of the model showed a relatively poor trend in the initial stage of injection and the final stage of injection. The model performance is expired to be further enhanced by optimizing the hyper-parameters input into the model.
Bridge hangers, such as those in suspension and cable-stayed bridges, suffer from cumulative fatigue damage caused by dynamic loads (e.g., cyclic traffic and wind loads) in their service condition. Thus, the identification of damage to hangers is important in preserving the service life of the bridge structure. This study develops a new method for condition assessment of bridge hangers. The tension force of the bridge and the damages in the element level can be identified using the Bayesian optimization method. To improve the number of observed data, the additional mass method is combined the Bayesian optimization method. Numerical studies are presented to verify the accuracy and efficiency of the proposed method. The influence of different acquisition functions, which include expected improvement (EI), probability-of-improvement (PI), lower confidence bound (LCB), and expected improvement per second (EIPC), on the identification of damage to the bridge hanger is studied. Results show that the errors identified by the EI acquisition function are smaller than those identified by the other acquisition functions. The identification of the damage to the bridge hanger with various types of boundary conditions and different levels of measurement noise are also studied. Results show that both the severity of the damage and the tension force can be identified via the proposed method, thereby verifying the robustness of the proposed method. Compared to the genetic algorithm (GA), particle swarm optimization (PSO), and nonlinear least-square method (NLS), the Bayesian optimization (BO) performs best in identifying the structural damage and tension force.
본 연구의 목적은 적외선 분광스펙트럼 데이터를 이용하여 대두 종자내의 지방산 함량을 동시에 예측할 수 있는지 여부를 조사하기 위한 것이다. 총 153종의 대두(Glycine max Merrill) 종자로부터 적외선 분광스펙트럼 및 지방산의 함량을 기체크로마토그라피 분석을 통하여 확인하였다. 적외선 분광스펙트럼 조사결과 대두는 단백질이나 아미노산의 amide bond region ($1,700{\sim}1,500cm^{-1}$), 핵산이나 인지질의 phosphodiester groups ($1,500{\sim}1,300cm^{-1}$) 그리고 탄수화물 등 다당류의 sugar region ($1,200{\sim}1,000cm^{-1}$)에서 계통별로 큰 차이가 이루어짐을 알 수 있었다. 총 29라인의 대두 계통별 시료로부터 지방산 함량을 조사한 결과 총 지방산의 함량은 건조 시료 0.1 g 당 $185.57{\mu}g$에서 $325.9{\mu}g$으로 계통간에 차이가 있었음을 알 수 있었으며 평균 함량은 $244.48{\mu}g$이었다. PLS regression 분석을 이용하여 총 5개 지방산(팔미틱산, 스테아릭산, 올레익산, 리노레익산 그리고 리노레닉산) 함량 예측 calibration models의 실측 검증 결과, 팔미틱산($R^2=0.8002$), 올레익산($R^2=0.8909$) 그리고 리노레익산($R^2=0.815$)은 회귀분석 상관계수가 0.8 이상으로 정확도 높음을 알 수 있었다. 그러나 스테아릭산($R^2=0.4598$)과 리노레닉산($R^2=0.6868$)의 경우 상관계수가 0.7 이하로 상대적으로 예측정확도가 낮음을 알 수 있었다. 본 연구에서 확립된 기술은 지방산의 조성 변환을 통하여 새로운 대두 품종 개발을 위한 계통선발 과정에서 매우 효율적인 수단으로 활용이 가능할 것으로 사료된다. 더 나아가 본 기술은 대두는 물론 대두 유래 농산물이나 식품의 품질 검증 수단으로 활용이 가능할 것으로 기대된다.
본 연구에서는 UV-VIS spectrophotometer를 이용한 total carotenoids, flavonoids, phenolics 함량 데이터와 FT-IR 스펙트럼 데이터를 다변량통계분석법을 통하여 기능성 성분 함량이 높은 아프리칸 얌 고속 선발 시스템을 구축하였다. 62개 아프리칸 얌의 total carotenoids 함량은 $0.01-0.91{\mu}g{\cdot}g^{-1}$ dry wt 나타냈다. Total flavonoids와 phenolics 함량은 $12.9-229.0{\mu}g{\cdot}g^{-1}$ dry wt와 $0.29-5.2mg{\cdot}g^{-1}$ dry wt로 각각 나타났다. 아프리칸 얌은 FT-IR 스펙트럼상의 1700-1500, 1500-1300, $1,100-950cm^{-1}$, 부위에서 중요한 스펙트럼 변화가 나타났다. 이 부위는 각각 amide I과 II을 포함하는 아미노산 및 단백질계열의 화합물, phosphodiester group을 포함한 핵산 및 인지질 그리고 단당류나 복합 다당류를 포함하는 carbohydrates 계열의 화합물들의 질적, 양적 정보를 반영하는 부위이다. PCA 분석과 PLS-DA 분석에서 62개 아프리칸 얌은 유연성이 높은 종으로 3개의 그룹을 형성하였다. 아프리칸 얌의 FT-IR 스펙트럼 데이터와 UV-VIS spectrophotometer을 이용한 total carotenoids, flavonoids, phenolics 함량 데이터 간에 PLS regression 분석하였다. Total carotenoids, flavonoids, phenolics 함량 성분의 실측 값과 예측 값간에 상관계수($R^2$)가 각각 0.83, 0.86, 0.72로 나타났다. 이 결과, 아프리칸 얌으로부터 FT-IR 스펙트럼을 이용한 total carotenoids, flavonoids, phenolics 함량 예측이 가능하였다. 본 연구에서 확립된 대사체 수준에서 아프리칸 얌의 유용 기능성 성분 함량 예측 모델링을 통해 품종, 계통의 신속한 선발 수단으로 활용이 가능할 것으로 예상된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.