• 제목/요약/키워드: least square algorithm

검색결과 892건 처리시간 0.025초

그래핀의 모드 I 균열에 대한 분자동역학 해석으로부터 균열 선단 응집 법칙의 평가 (Evaluation of Crack-tip Cohesive Laws for the Mode I Fracture of the Graphene from Molecular Dynamics Simulations)

  • 김현규
    • 한국전산구조공학회논문집
    • /
    • 제26권5호
    • /
    • pp.393-399
    • /
    • 2013
  • 본 논문은 그래핀의 모드 I 균열 진전에 대한 분자동역학 해석과 수치보조장을 사용하는 영역 투영 방법의 역문제 해석 방법을 결합하여 균열 선단 응집 법칙을 평가하는 효율적인 방법을 제시하고 있다. 그래핀의 균열 선단 응집 법칙을 결정하는 것은 균열 선단에서 멀리 떨어진 영역의 변위를 사용하여 균열 면에서 미지의 응집 트랙션과 열림 변위를 구하는 역문제를 해석해야 하는데 상호 J-적분과 M-적분의 경로 보존성과 효율적인 수치보조장을 사용하는 방법을 적용하였다. 분자동역학 해석에서 원자 변위를 유한요소 절점 변위로 이동최소자승법을 사용하여 근사하였으며 안정적인 역문제 해석을 통하여 원자 단위의 거동을 연속체 해석으로 연결시킬 수 있는 새로운 방법을 보여주었다.

CATV 망용 고속 비대칭 기저대역 모뎀 ASIC 칩 설계 (Design of a High Speed Asymmetric Baseband MODEM ASIC Chip for CATV Network)

  • 박기혁
    • 한국통신학회논문지
    • /
    • 제25권9A호
    • /
    • pp.1332-1339
    • /
    • 2000
  • 본 논문에서는 MCNS(Multimedia Cable N$\xi$twork System)의 DOCSIS(Data Over Cable Service Interface S Specification) 표준안의 물리계층을 지원하는 비대칭형 기저대역 모댐 ASIC 칩의 아키텍쳐와 설계에 대해 기술한다. 구현한 모뎀 칩은 크게 QPSK/16-QAM 방식의 상향 스트림용 송신부와 64/256-QAM 방식의 하향 스트림용 수신부로 구성되어 있으며, 심볼 타이밍 복구회로, 반송파 복구회로. MMA(Multi Modulus Algorithm)와 LMS(Least Mean Square) 알고리즘을 적용한 결정 궤환 구조의 블라인드 등화기를 포함한다. 구현한 모뎀 칩은 64/256-QAM 변복조 방식에서 각각 48Mbps, 64Mbps의 데이터 전송률을 지원하고, 심볼 전송률은 기존의 QAM 수신기들보다 빠른 8MBaud를 갖는다. 구현한 칩은 $0.35\mu\textrm{m}$ 표준 셀(Standard Cell) 라이브러리를 사용하여 논리합성을 수행하였으며, 총 게이트 수는 약 29만 게이트이며, 현재 ASIC 칩으후 제작중이다.

  • PDF

저작운동으로 인한 진동 잡음 신호의 경감을 위한 측두골 이식형 마이크로폰의 설계 (The Design of Temporal Bone Type Implantable Microphone for Reduction of the Vibrational Noise due to Masticatory Movement)

  • 우승탁;정의성;임형규;이윤정;성기웅;이정현;조진호
    • 센서학회지
    • /
    • 제21권2호
    • /
    • pp.144-150
    • /
    • 2012
  • A microphone for fully implantable hearing device was generally implanted under the skin of the temporal bone. So, the implanted microphone's characteristics can be affected by the accompanying noise due to masticatory movement. In this paper, the implantable microphone with 2-channels structure was designed for reduction of the generated noise signal by masticatory movement. And an experimental model for generation of the noise by masticatory movement was developed with considering the characteristics of human temporal bone and skin. Using the model, the speech signal by a speaker and the artificial noise by a vibrator were supplied simultaneously into the experimental model, the electrical signals were measured at the proposed microphone. The collected signals were processed using a general adaptive filter with least mean square(LMS) algorithm. To confirm performance of the proposed methods, the correlation coefficient and the signal to noise ratio(SNR) before and after the signal processing were calculated. Finally, the results were compared each other.

방사형 기저함수 신경회로망 기반 숫자 인식 시스템의 설계 : 전처리 알고리즘을 이용한 인식성능의 비교연구 (Design of Digits Recognition System Based on RBFNNs : A Comparative Study of Pre-processing Algorithms)

  • 김은후;김봉연;오성권
    • 전기학회논문지
    • /
    • 제66권2호
    • /
    • pp.416-424
    • /
    • 2017
  • In this study, we propose a design of digits recognition system based on RBFNNs through a comparative study of pre-processing algorithms in order to recognize digits in handwritten. Histogram of Oriented Gradient(HOG) is used to get the features of digits in the proposed digits recognition system. In the pre-processing part, a dimensional reduction is executed by using Principal Component Analysis(PCA) and (2D)2PCA which are widely adopted methods in order to minimize a loss of the information during the reduction process of feature space. Also, The architecture of radial basis function neural networks consists of three functional modules such as condition, conclusion, and inference part. In the condition part, the input space is partitioned with the use of fuzzy clustering realized by means of the Fuzzy C-Means algorithm. Also, it is used instead of gaussian function to consider the characteristic of input data. In the conclusion part, the connection weights are used as the extended type of polynomial expression such as constant, linear, quadratic and modified quadratic. By using MNIST handwritten digit benchmarking database, experimental results show the effectiveness and efficiency of proposed digit recognition system when compared with other studies.

안정화된 딥 네트워크 구조를 위한 다항식 신경회로망의 연구 (A Study on Polynomial Neural Networks for Stabilized Deep Networks Structure)

  • 전필한;김은후;오성권
    • 전기학회논문지
    • /
    • 제66권12호
    • /
    • pp.1772-1781
    • /
    • 2017
  • In this study, the design methodology for alleviating the overfitting problem of Polynomial Neural Networks(PNN) is realized with the aid of two kinds techniques such as L2 regularization and Sum of Squared Coefficients (SSC). The PNN is widely used as a kind of mathematical modeling methods such as the identification of linear system by input/output data and the regression analysis modeling method for prediction problem. PNN is an algorithm that obtains preferred network structure by generating consecutive layers as well as nodes by using a multivariate polynomial subexpression. It has much fewer nodes and more flexible adaptability than existing neural network algorithms. However, such algorithms lead to overfitting problems due to noise sensitivity as well as excessive trainning while generation of successive network layers. To alleviate such overfitting problem and also effectively design its ensuing deep network structure, two techniques are introduced. That is we use the two techniques of both SSC(Sum of Squared Coefficients) and $L_2$ regularization for consecutive generation of each layer's nodes as well as each layer in order to construct the deep PNN structure. The technique of $L_2$ regularization is used for the minimum coefficient estimation by adding penalty term to cost function. $L_2$ regularization is a kind of representative methods of reducing the influence of noise by flattening the solution space and also lessening coefficient size. The technique for the SSC is implemented for the minimization of Sum of Squared Coefficients of polynomial instead of using the square of errors. In the sequel, the overfitting problem of the deep PNN structure is stabilized by the proposed method. This study leads to the possibility of deep network structure design as well as big data processing and also the superiority of the network performance through experiments is shown.

Nuclear Magnetic Resonance (NMR)-Based Quantification on Flavor-Active and Bioactive Compounds and Application for Distinguishment of Chicken Breeds

  • Kim, Hyun Cheol;Yim, Dong-Gyun;Kim, Ji Won;Lee, Dongheon;Jo, Cheorun
    • 한국축산식품학회지
    • /
    • 제41권2호
    • /
    • pp.312-323
    • /
    • 2021
  • The purpose of this study was to use 1H nuclear magnetic resonance (1H NMR) to quantify taste-active and bioactive compounds in chicken breasts and thighs from Korean native chicken (KNC) [newly developed KNCs (KNC-A, -C, and -D) and commercial KNC-H] and white-semi broiler (WSB) used in Samgye. Further, each breed was differentiated using multivariate analyses, including a machine learning algorithm designed to use metabolic information from each type of chicken obtained using 1H-13C heteronuclear single quantum coherence (2D NMR). Breast meat from KNC-D chickens were superior to those of conventional KNC-H and WSB chickens in terms of both taste-active and bioactive compounds. In the multivariate analysis, meat portions (breast and thigh) and chicken breeds (KNCs and WSB) could be clearly distinguished based on the outcomes of the principal component analysis and partial least square-discriminant analysis (R2=0.945; Q2=0.901). Based on this, we determined the receiver operating characteristic (ROC) curve for each of these components. AUC analysis identified 10 features which could be consistently applied to distinguish between all KNCs and WSB chickens in both breast (0.988) and thigh (1.000) meat without error. Here, both 1H NMR and 2D NMR could successfully quantify various target metabolites which could be used to distinguish between different chicken breeds based on their metabolic profile.

머신러닝을 이용한 다공형 GDI 인젝터의 플래시 보일링 분무 예측 모델 개발 (Development of Flash Boiling Spray Prediction Model of Multi-hole GDI Injector Using Machine Learning)

  • 상몽소;신달호;;박수한
    • 한국분무공학회지
    • /
    • 제27권2호
    • /
    • pp.57-65
    • /
    • 2022
  • The purpose of this study is to use machine learning to build a model capable of predicting the flash boiling spray characteristics. In this study, the flash boiling spray was visualized using Shadowgraph visualization technology, and then the spray image was processed with MATLAB to obtain quantitative data of spray characteristics. The experimental conditions were used as input, and the spray characteristics were used as output to train the machine learning model. For the machine learning model, the XGB (extreme gradient boosting) algorithm was used. Finally, the performance of machine learning model was evaluated using R2 and RMSE (root mean square error). In order to have enough data to train the machine learning model, this study used 12 injectors with different design parameters, and set various fuel temperatures and ambient pressures, resulting in about 12,000 data. By comparing the performance of the model with different amounts of training data, it was found that the number of training data must reach at least 7,000 before the model can show optimal performance. The model showed different prediction performances for different spray characteristics. Compared with the upstream spray angle and the downstream spray angle, the model had the best prediction performance for the spray tip penetration. In addition, the prediction performance of the model showed a relatively poor trend in the initial stage of injection and the final stage of injection. The model performance is expired to be further enhanced by optimizing the hyper-parameters input into the model.

A numerical application of Bayesian optimization to the condition assessment of bridge hangers

  • X.W. Ye;Y. Ding;P.H. Ni
    • Smart Structures and Systems
    • /
    • 제31권1호
    • /
    • pp.57-68
    • /
    • 2023
  • Bridge hangers, such as those in suspension and cable-stayed bridges, suffer from cumulative fatigue damage caused by dynamic loads (e.g., cyclic traffic and wind loads) in their service condition. Thus, the identification of damage to hangers is important in preserving the service life of the bridge structure. This study develops a new method for condition assessment of bridge hangers. The tension force of the bridge and the damages in the element level can be identified using the Bayesian optimization method. To improve the number of observed data, the additional mass method is combined the Bayesian optimization method. Numerical studies are presented to verify the accuracy and efficiency of the proposed method. The influence of different acquisition functions, which include expected improvement (EI), probability-of-improvement (PI), lower confidence bound (LCB), and expected improvement per second (EIPC), on the identification of damage to the bridge hanger is studied. Results show that the errors identified by the EI acquisition function are smaller than those identified by the other acquisition functions. The identification of the damage to the bridge hanger with various types of boundary conditions and different levels of measurement noise are also studied. Results show that both the severity of the damage and the tension force can be identified via the proposed method, thereby verifying the robustness of the proposed method. Compared to the genetic algorithm (GA), particle swarm optimization (PSO), and nonlinear least-square method (NLS), the Bayesian optimization (BO) performs best in identifying the structural damage and tension force.

적외선 분광스펙트럼 및 기체크로마토그라피 분석 데이터의 다변량 통계분석을 이용한 대두 종자 지방산 함량예측 (Simultaneous estimation of fatty acids contents from soybean seeds using fourier transform infrared spectroscopy and gas chromatography by multivariate analysis)

  • 안명숙;지은이;송승엽;안준우;정원중;민성란;김석원
    • Journal of Plant Biotechnology
    • /
    • 제42권1호
    • /
    • pp.60-70
    • /
    • 2015
  • 본 연구의 목적은 적외선 분광스펙트럼 데이터를 이용하여 대두 종자내의 지방산 함량을 동시에 예측할 수 있는지 여부를 조사하기 위한 것이다. 총 153종의 대두(Glycine max Merrill) 종자로부터 적외선 분광스펙트럼 및 지방산의 함량을 기체크로마토그라피 분석을 통하여 확인하였다. 적외선 분광스펙트럼 조사결과 대두는 단백질이나 아미노산의 amide bond region ($1,700{\sim}1,500cm^{-1}$), 핵산이나 인지질의 phosphodiester groups ($1,500{\sim}1,300cm^{-1}$) 그리고 탄수화물 등 다당류의 sugar region ($1,200{\sim}1,000cm^{-1}$)에서 계통별로 큰 차이가 이루어짐을 알 수 있었다. 총 29라인의 대두 계통별 시료로부터 지방산 함량을 조사한 결과 총 지방산의 함량은 건조 시료 0.1 g 당 $185.57{\mu}g$에서 $325.9{\mu}g$으로 계통간에 차이가 있었음을 알 수 있었으며 평균 함량은 $244.48{\mu}g$이었다. PLS regression 분석을 이용하여 총 5개 지방산(팔미틱산, 스테아릭산, 올레익산, 리노레익산 그리고 리노레닉산) 함량 예측 calibration models의 실측 검증 결과, 팔미틱산($R^2=0.8002$), 올레익산($R^2=0.8909$) 그리고 리노레익산($R^2=0.815$)은 회귀분석 상관계수가 0.8 이상으로 정확도 높음을 알 수 있었다. 그러나 스테아릭산($R^2=0.4598$)과 리노레닉산($R^2=0.6868$)의 경우 상관계수가 0.7 이하로 상대적으로 예측정확도가 낮음을 알 수 있었다. 본 연구에서 확립된 기술은 지방산의 조성 변환을 통하여 새로운 대두 품종 개발을 위한 계통선발 과정에서 매우 효율적인 수단으로 활용이 가능할 것으로 사료된다. 더 나아가 본 기술은 대두는 물론 대두 유래 농산물이나 식품의 품질 검증 수단으로 활용이 가능할 것으로 기대된다.

FT-IR 스펙트럼 데이터의 다변량 통계분석을 이용한 고기능성 아프리칸 얌 식별 및 기능성 성분 함량 예측 모델링 (Discrimination of African Yams Containing High Functional Compounds Using FT-IR Fingerprinting Combined by Multivariate Analysis and Quantitative Prediction of Functional Compounds by PLS Regression Modeling)

  • 송승엽;지은이;안명숙;김동진;김인중;김석원
    • 원예과학기술지
    • /
    • 제32권1호
    • /
    • pp.105-114
    • /
    • 2014
  • 본 연구에서는 UV-VIS spectrophotometer를 이용한 total carotenoids, flavonoids, phenolics 함량 데이터와 FT-IR 스펙트럼 데이터를 다변량통계분석법을 통하여 기능성 성분 함량이 높은 아프리칸 얌 고속 선발 시스템을 구축하였다. 62개 아프리칸 얌의 total carotenoids 함량은 $0.01-0.91{\mu}g{\cdot}g^{-1}$ dry wt 나타냈다. Total flavonoids와 phenolics 함량은 $12.9-229.0{\mu}g{\cdot}g^{-1}$ dry wt와 $0.29-5.2mg{\cdot}g^{-1}$ dry wt로 각각 나타났다. 아프리칸 얌은 FT-IR 스펙트럼상의 1700-1500, 1500-1300, $1,100-950cm^{-1}$, 부위에서 중요한 스펙트럼 변화가 나타났다. 이 부위는 각각 amide I과 II을 포함하는 아미노산 및 단백질계열의 화합물, phosphodiester group을 포함한 핵산 및 인지질 그리고 단당류나 복합 다당류를 포함하는 carbohydrates 계열의 화합물들의 질적, 양적 정보를 반영하는 부위이다. PCA 분석과 PLS-DA 분석에서 62개 아프리칸 얌은 유연성이 높은 종으로 3개의 그룹을 형성하였다. 아프리칸 얌의 FT-IR 스펙트럼 데이터와 UV-VIS spectrophotometer을 이용한 total carotenoids, flavonoids, phenolics 함량 데이터 간에 PLS regression 분석하였다. Total carotenoids, flavonoids, phenolics 함량 성분의 실측 값과 예측 값간에 상관계수($R^2$)가 각각 0.83, 0.86, 0.72로 나타났다. 이 결과, 아프리칸 얌으로부터 FT-IR 스펙트럼을 이용한 total carotenoids, flavonoids, phenolics 함량 예측이 가능하였다. 본 연구에서 확립된 대사체 수준에서 아프리칸 얌의 유용 기능성 성분 함량 예측 모델링을 통해 품종, 계통의 신속한 선발 수단으로 활용이 가능할 것으로 예상된다.