• 제목/요약/키워드: least square algorithm

검색결과 892건 처리시간 0.022초

피보나치 수열을 활용한 가변스텝 LMS 알고리즘 (Variable Step LMS Algorithm using Fibonacci Sequence)

  • 우홍체
    • 융합신호처리학회논문지
    • /
    • 제19권2호
    • /
    • pp.42-46
    • /
    • 2018
  • 다양한 신호처리 및 통신환경에서 적응신호처리는 매우 중요하다. 적응신호처리 방식 중에서 least mean square(LMS) 알고리즘은 단순하면서도 강인하기 때문에 널리 사용되고 있다. 가변스텝 LMS 알고리즘은 스텝을 가변하므로 빠른 수렴속도와 작은 초과자승오차를 얻을 수 있는 방식이다. 성능향상을 위하여 다양한 가변스텝 LMS 알고리즘이 연구되어 왔다. 하지만 성능향상을 위하여 가변스텝 LMS 알고리즘의 계산 복잡도는 일부 방식에서는 크게 높아지게 되었다. 계산 복잡도가 낮은 고정스텝 LMS 알고리즘과 빠른 수렴속도의 가변스텝 LMS 알고리즘의 장점을 같이 가질 수 있는 간헐적 스텝 갱신 알고리즘을 제안한다. 간헐적으로 스텝 갱신을 할 때 피보나치 수열을 사용하여 스텝 갱신 횟수를 상당히 낮추면서도 가변스텝 LMS 알고리즘의 성능을 유지할 수 있었다. 적응 등화기에 제안한 가변스텝 LMS 알고리즘을 적용하여 그 성능을 확인하였다.

가변 스텝사이즈를 적용한 월시.아다말 적응필터 (A Walsh-Hadamard Transform Adaptive Filter with Time-varying Step Size)

  • 오신범;이채욱
    • 한국산업정보학회논문지
    • /
    • 제5권2호
    • /
    • pp.32-38
    • /
    • 2000
  • 적응 신호처리 분야에서 LMS(Least Mean Square)알고리즘은 그 식의 간편함과 구현의 용이함으로 가장 널리 이용되고 있다. 대부분의 LMS 알고리즘은 수렴비를 조절하는 적응계수를 일정한 값으로 정하는데, 이는 안전성과 속도사이에서 트레이드오프가 존재한다. 이러한 단점을 해결하고 성능을 개선하기 위하여 가변 LMS(VLMS: Variable LMS)알고리즘이 발표되었다. 그러나 기존에 발표된 가변 스텝사이즈 알고리즘들도 또 다른 적응인자를 사용하므로 알고리즘이 새로운 적응인자 값에 의해 성능이 좌우된다는 문제점이 있다. 본 논문에서는 오차 제곱의 기울기에 따라 적응인자 스스로 값을 조절하는 가변 스텝사이즈 알고리즘을 제안하였다. 제안한 알고리즘을 실수값을 갖는 월시-아다말(Walsh-Hadamard)변환을 사용하여 빠른 수렴을 얻도록 하였으며, 계산량을 감소시키기 위해 부분수정 알고리즘에 적용하였다. 제안한 알고리즘의 성능 확인을 위하여 잡음 제거 시스템에 적용하여 기존의 알고리즘들과 비교하여 그 성능이 우수함을 입증하였다.

  • PDF

가우시안 입력신호에 대한 Signed Regressor 최소 평균자승 적응 방식의 동작 특성 (On the Behavior of the Signed Regressor Least Mean Squares Adaptation with Gaussian Inputs)

  • 조성호
    • 한국통신학회논문지
    • /
    • 제18권7호
    • /
    • pp.1028-1035
    • /
    • 1993
  • Signed Regressor 적응 알고리즘은 한 비트 양자화를 이용하여 탭 입력이 +1또는 -1이 되도록 양자화한다. 따라서 이미 널리 사용되고 있는 Least Mean Square (LMS) 알고리즘에 비하여 계산량 측면에서 효율적이다. 그러나 SR 알고리즘의 동작특성은 입력신호의 특성에 매우 종속적이며, 효율성을 위하여 성능을 약간 희생한다. 본 논문에서는 이 SR 알고리즘의 동작특성에 대하여 통계적 분석을 하였다. 이를 위해, 사용되는 신호가 평균이 제로인 가우시안 신호라는 가정과 이러한 분석에 이미 널리 통용되어 사용되는 독립가정을 이용하여, SR 알고리즘의 평균 및 평균자승 특성을 나타내는 일련의 비선형 관계식을 유도하였다. 그리고 유도된 이론적 결과가 실험적 결과와 매우 일치함을 보였다.

  • PDF

노이즈 캔슬링 헤드폰에 적합한 잔여 음악 제거기 기반의 2차 경로 추정 알고리즘 (Secondary Path Estimation Algorithm Based on Residual Music Canceller for Noise Cancelling Headphone)

  • 지유나;이근상;박영철
    • 한국음향학회지
    • /
    • 제34권5호
    • /
    • pp.377-384
    • /
    • 2015
  • 본 논문은 노이즈 캔슬링 헤드폰을 위한 능동 소음 제어 알고리즘을 제안한다. 제안 알고리즘은 피드백 구조의 filtered-x least mean square algorithm(FxLMS) 기반 능동 소음 제어 기술을 이용하여 외부에서 헤드폰 내부로 유입되는 소음을 제어한다. 이때 가변적인 2차 경로에 강인하게 대처하기 위해 지속적으로 2차 경로를 추정하는 잔여 음악제거기 기반의 온라인 2차 경로 추정 알고리즘을 이용한다. 실험을 통해 2차 경로가 변화하는 환경에서 제안 능동 소음제어 알고리즘은 기존 알고리즘들에 비해 음악 신호의 왜곡 없이 안정적으로 일관성 있는 소음 제어 성능을 보임을 확인하였다.

공간 탐색 최적화 알고리즘을 이용한 K-Means 클러스터링 기반 다항식 방사형 기저 함수 신경회로망: 설계 및 비교 해석 (K-Means-Based Polynomial-Radial Basis Function Neural Network Using Space Search Algorithm: Design and Comparative Studies)

  • 김욱동;오성권
    • 제어로봇시스템학회논문지
    • /
    • 제17권8호
    • /
    • pp.731-738
    • /
    • 2011
  • In this paper, we introduce an advanced architecture of K-Means clustering-based polynomial Radial Basis Function Neural Networks (p-RBFNNs) designed with the aid of SSOA (Space Search Optimization Algorithm) and develop a comprehensive design methodology supporting their construction. In order to design the optimized p-RBFNNs, a center value of each receptive field is determined by running the K-Means clustering algorithm and then the center value and the width of the corresponding receptive field are optimized through SSOA. The connections (weights) of the proposed p-RBFNNs are of functional character and are realized by considering three types of polynomials. In addition, a WLSE (Weighted Least Square Estimation) is used to estimate the coefficients of polynomials (serving as functional connections of the network) of each node from output node. Therefore, a local learning capability and an interpretability of the proposed model are improved. The proposed model is illustrated with the use of nonlinear function, NOx called Machine Learning dataset. A comparative analysis reveals that the proposed model exhibits higher accuracy and superb predictive capability in comparison to some previous models available in the literature.

Learning Behaviors of Stochastic Gradient Radial Basis Function Network Algorithms for Odor Sensing Systems

  • Kim, Nam-Yong;Byun, Hyung-Gi;Kwon, Ki-Hyeon
    • ETRI Journal
    • /
    • 제28권1호
    • /
    • pp.59-66
    • /
    • 2006
  • Learning behaviors of a radial basis function network (RBFN) using a singular value decomposition (SVD) and stochastic gradient (SG) algorithm, together named RBF-SVD-SG, for odor sensing systems are analyzed, and a fast training method is proposed. RBF input data is from a conducting polymer sensor array. It is revealed in this paper that the SG algorithm for the fine-tuning of centers and widths still shows ill-behaving learning results when a sufficiently small convergence coefficient is not used. Since the tuning of centers in RBFN plays a dominant role in the performance of RBFN odor sensing systems, our analysis is focused on the center-gradient variance of the RBFN-SVD-SG algorithm. We found analytically that the steadystate weight fluctuation and large values of a convergence coefficient can lead to an increase in variance of the center-gradient estimate. Based on this analysis, we propose to use the least mean square algorithm instead of SVD in adjusting the weight for stable steady-state weight behavior. Experimental results of the proposed algorithm have shown faster learning speed and better classification performance.

  • PDF

원근 혼합환경에서 간단한 닫힌 형식을 이용한 단일 음원 위치 추정 기법 (Simple closed-form solution for a single source estimation in mixed far-field and near-field conditions)

  • 정태진;이균경
    • 한국음향학회지
    • /
    • 제35권1호
    • /
    • pp.35-41
    • /
    • 2016
  • 본 논문에서는 상관함수와 최소자승 기법에 기반하여 단일 음원의 위치가 원거리 혹은 근거리 모두 가능한 경우, 이에 상관없이 닫힌 형태로 위치를 추정하는 기법을 제안한다. 최근 균일 환영 배열에서 상호상관함수를 이용하여 원거리 단일 음원의 위치를 2차원으로 추정하는 기법이 제안되었으며, 이를 확장하여 근거리 단일 음원의 위치를 3차원으로 추정하는 기법이 제안되었다. 그러나 기존 기법은 음원의 위치가 원거리, 혹은 근거리로 제한된 상황만 다루고 있다. 반면 제안 기법은 먼저 원거리 음원으로 가정하여 거리 독립적으로 방위와 고각을 구하고 이후 거리 추정에서 원거리와 근거리 음원을 구분하여 혼합 환경에 적용가능하다. 시뮬레이션에서는 두 가지 경우 모두에 대해 실험하여 제안 기법의 타당성을 검증하였다.

RPO 기반 강화학습 알고리즘을 이용한 로봇제어 (Robot Control via RPO-based Reinforcement Learning Algorithm)

  • 김종호;강대성;박주영
    • 한국지능시스템학회논문지
    • /
    • 제15권4호
    • /
    • pp.505-510
    • /
    • 2005
  • 제어 입력 선택 문제에 있어서 확률적 전략을 활용하는 RPO(randomized policy optimizer) 기법은 최근에 개발된 강화학습 기법으로써, 많은 적용 사례를 통해서 그 가능성이 입증되고 있다 본 논문에서는, 수정된 RPO 알고리즘을 제안하는데, 이 수정된 알고리즘의 크리틱 네트워크 부분은 RLS(recursive least square) 기법을 통하여 갱신된다. 수정된 RPO 기법의 효율성을 확인하기 위해 Kimura에 의해서 연구된 로봇에 적용하여 매우 우수한 성능을 관찰하였다. 또한, 매트랩 애니메이션 프로그램의 개발을 통해서, 로봇의 이동이 시간에 따라 가속되는 학습 알고리즘의 효과를 시각적으로 확인 할 수 있었다.

결정함수 가변스텝 LMS 알고리즘 (Deterministic Function Variable Step Size LMS Algorithm)

  • 우홍체
    • 융합신호처리학회논문지
    • /
    • 제12권2호
    • /
    • pp.128-132
    • /
    • 2011
  • LMS(Least mean square) 적응 알고리즘은 radar, sonar, 음성처리, 이동통신 분야 등에서 중요한 역할을 하고 있다. 이동통신 분야에서는 LMS 적응 알고리즘의 빠른 수렴속도가 더욱 중요하다. 하지만 LMS 알고리즘은 수렴속도가 느리고 일정치 않은 수렴을 하는 문제점을 가지고 있다. 이러한 문제점을 해결하기 위하여 다양한 가변 스텝 LMS 적응 알고리즘들이 최근에 많이 연구되어왔다. 연구된 많은 LMS 알고리즘들은 빠른 수렴속도를 얻기 위하여 복잡한 가변스텝방식을 사용하는데 이는 많은 계산량을 필요로 한다. 따라서 LMS 알고리즘의 최대 장점인 단순성과 강인성을 약화시킨다. 제안하는 결정함수 가변스텝 LMS 알고리즘은 스텝 값을 간단한 결정함수에 따라 결정하므로 단순성을 최대한 강화하면서 빠른 수렴속도를 얻도록 한다.

Adaptive Interference Cancellation Using CMA-Correlation Normalized LMS for WCDMA System

  • Han, Yong-Sik;Yang, Woon-Geun
    • Journal of information and communication convergence engineering
    • /
    • 제8권2호
    • /
    • pp.155-158
    • /
    • 2010
  • In this article, we proposed a new interference canceller using the adaptive algorithm. We designed constant modulus algorithm-correlation normailized least mean square (CMA-CNLMS) for wireless system. This structure is normalized LMS algorithm using correlation between the desired and input signal for cancelling the interference signals in the wideband code division multiple access (WCDMA) system. We showed that the proposed algorithm could improve the Mean Square Error (MSE) performance of LMS algorithm. MATLAB (Matrix Laboratory) is employed to analyze the proposed algorithm and to compare it with the experimental results. The MSE value of the LMS with mu=0.0001 was measured as - 12.5 dB, and that of the proposed algorithm was -19.5 dB which showed an improvement of 7dB.