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ABSTRACT

The signed regressor (SR) algorithm employs one bit quantization on the input regressor (or tap
input) in such a way that the quantized input sequences become +1 or —1. The algorithm is
computationally more efficient by nature than the popular least mean square (LMS) algorithm.
The behavior of the SR algorithm unfortunately is heavily dependent on the characteristics of the
input signal, and there are some inputs for which the SR algorithm becomes unstable. It is known,
however, that such a stability problem does not take place with the SR algorithm when the input
signal is Gaussian, such as in the case of speech processing. In this paper, we explore a statistical
analysis of the SR algorithm. Under the assumption that signals involved are zero-mean and
Gaussian, and further employing the commonly used independence assumption, we derive a set of
nonlinear evolution equations that characterizes the mean and mean-squared behavior of the SR al-
gorithm, Experimental results that show very good agreement with our theoretical derivations are
also presented.
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1. Introduction

The adaptive LMS algorithm [1],[2] has rece-
ived a great deal of attention during the last two
decades and 1s now widely used in variety of ap-
plications due to its simplicity. In very high data
rate applications of adaptive filters, however, it is
often necessary to reduce the computational re-
quirements of the adaptive mechanism any fur-
ther. One of the most popular and well known
approaches of reducing the computational com-
plexity is-to use the sign algorithm [3]-[5], for
which the estimation error signal in the coef-
ficient update equation is quantized such that the
quantized error becomes +1 or —1 according to
the sign of the error signal (i.e., one bit quantiz-
ation). Another such efficient version of the LMS
algorithm is the SR algorithm [6]-[8]. This algor-
ithm employs one bit quantization on the input re-
gressor, and thus provides the same complexity
as the sign algorithm,

The behavior of the SR algorithm unfortunat-
ely is heavily dependent on the characteristics of
the input signal, and there are some inputs for
which the SR algorithm becomes unstable. It is
known, however, that such a stability problem
does not take place with the SR algorithm when
the input signal is Gaussian, such as in the case
of speech processing. Moschner [6] first sugge-
sted the SR method, and examined its behavior.
It was shown that the algorithm is convergent in
the mean sense under the independence assump-
tion and the assumption that the signal x(»n) is
Gaussian, Sethares, et al. [7] extended the result
in [6] by investigating “persistence of excitation”
conditions for the SR algorithm, It was proved
that the SR algorithm is “exponentially stable”
with small enough stepsize if the input x{(») is
generated by a zero-mean and white Gaussian
random source passed through a stable linear fil-
ter, or is independent and identically distributed
with finite moments, Other processes“ were thou-
ght possibly to cause divergence, Eweda [8] also
studied the performance of the SR algorithm in

both stationary and nonstationary environments,
and drew several important properties of the al-
gorithm. One of the most important results was a
proof of convergence of the SR algorithm with an
M-dependence model. (M-dependence means that
there exists a positive number M such that for all
k and for any random vector process X(m), {X
(n), n<k} and {X(n), n=>k-+ M} are indepen-
dent.)

This paper extends the results in [6]-[8] by
analyzing the statistical behavior of the SR algor-
ithm when signals involved are zero-mean, wide-
sense stationary, and Gaussian. In the next sec-
tion, by making use of Price’s theorem [9] and
further employing the independence assumption
[10], a set of nonlinear difference equations that
characterizes the mean and mean-squared beha-
vior of the filter coefficients and the mean-squ-
ared estimation error is derived. A condition for
the mean convergence is also found, Experimen-
tal results demonstrating the validity of the ana-
lytic results are included in Section [, and the
concluding remarks are made in Section IV.

II. Statistical Convergence Behavior

Consider the problem of estimating the primary
input signal d(n) using the reference input x(n).
Let H(n) denote the adaptive filter coefficient
vector of size N, and e(n) denote the estimation
error signal. Define the regressor vector X(#n) as

X(n)=[x(n), x(n—1), -, x(n—N+1)7, (1)

where [ -]7 denotes the transpose of [-]. The SR
algorithm under consideration updates the coef-
ficient vector H(n) using

Hn+1)=Hn) +usign{X(n)}e(n), (2

where p denotes the adaptation step-size or con-
vergence parameter, signi{X{(n)} represents the
vector of size N that consists of +1 or —1 ac-
cording to the sign of its entries x(%—i¢) for 0<i
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<N-—1, and
e(n) =d(n)—X"(n) H(n). (3)

As can be seen in {2) and (3), if u is chosen to be
a negative integer power of two, then the SR al-
gorithm requires N multiplications and 2N addit-
ions for each iteration, while the LMS algorithm
needs 2N multiplications and 2N additions,

Now, before starting the analysis, let us define
the following notations : Let H,p denote the opti-
mum coefficient vector given by

Hop==R %\ Rux, (4)
where

Ryx=E{X(n) XT(n)}, (5)
Rix=E{d(n) X(n)}, (6)

and E{-} denotes a statistical expectation of {-}.
Also, define the coefficient misalignment vector
V(n) as

V(n)=H(n)~ Hop, (7)
and its autocorrelation matrix K(») as
K(n)=E{V(n) VT(n)}. (8)
Using (7) in (2), we get
Vin+1)=V(n)+usign{X(n)teln). (9)
The optimal estimation error e.(#n) is given by
emin(n) =d(n) —XT(n) Hop. (10)
Combining (3), (7), and (10), it follows that

e(n) = epin— X" (n) Vin). (11)

Finally, let
1030

Emin=Ele2, (n)} (12)

denote the minimum mean-squared estimation er-
ror.

Convergence analysis of the SR algorithm is
much more complicated than that of the LMS al-
gorithm due to existence of the nonlinear “clip-
ping” operation on the input process. We thus
make the following assumptions to make the
anlysis mathematically more tractable :

Assumption 1:d(n) and X(») are zero-mean, wide-
sense stationary, and jointly Gaussian random
processes.

Assumption 2 : The input pair {d(n), X(n)! at time
n is independent of {d(k), X(k)} at time k, if n#k.

A consequence of Assumption 1 is that the esti-
mation error e(n) given in (3) is also a zero-mean
and Gaussian process when conditioned on the co-
efficient vector H(n) (or equivalently, on I"(n)).
Assumption 2 is the commonly employed “inde-
pendence assumption” and seldom true in prac-
tice. It is, however, shown in [10] that the as-
sumption is valid if u is chosen to be sufficiently
small. Also, the analysis using this assumption
has produced results in the past that accurately
predict the behavior of the adaptive filters even
in circumstances where the assumption is grossly
violated [4],(5]. One direct consequence of As-
sumption 2 is that H(») is independent of the in-
put pair {d(»), X(»n)} since H(n) depends only on
inputs at time n—1 and before. Note also that As-
sumption 2 does not restrict the nature of the
matrix Rxx.

Now, taking the statistical expectation on both
sides of (2) gives

E{Hn+ 1)}=E{H(n)}+ puE{sign{X(n)} e(n)}.

(13)
The last expectation of (13) can be computed
using either Price’s theorem [9] or the following
result modified from [11]: for an arbitrary Borel
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function G(-) and Gaussian X and e,

E{XelE{X"Gix}}

E{G(X)e}= EixT X}

(14)

Since e(n) is zero-mean and Gaussian when con-
ditioned on H(n), it follows from (3) and (14)
that

Elsign{X(n)}en)}=E{E{sign{X(n)} e(n) |H(n)]}

_ E{XT(n)signiX(n)}}
E{XT(n) X(n)}

E{E[ X(n) e(n)|H(n) ]}
(15)

Defining o2=E{x%(n)} and making use of the
fact that the mean-absolute value of a Gaussian
random variable with zero mean and variance ¢°
is o \/2_/;, we find under Assumption 1 that

ENXT(n) sign{X () =T Elxtn—i)|= /2 Nox,
=0 T

(16)
and

E{xf(n>x(n)}='}g'; Eln—dl=No®,  (17)

Also, using (3) as well as Assumption 2 gives
E{X(n) e(n)|H(n)}= Rax — Rxx H(n). (18)

Substituting (16)-(18) in (15), and further using
(7) then yields

Etsign(X(n}em) = v/ 2 & (Rux ~Rux EUH(m)]

__ \/% L R BV,
(19)

Therefore, using (19) in (13), we obtain the
mean behavior of the SR algorithm as .

n

EHm+ D)= [1v= /2 £ Re | EtHON)

+\/% £ Rax. (20)

where Iy denotes the NXN identity matrix, The
above expression can be rewritten using the coef-
ficient misalignemt vector as

E{V(n+1)}=[]N_ \F’% ‘f: Rxx ]E{V(n)}.
(21)

It is easy to show that the mean behavior of
the coefficient misalignment vector given in (21)
asymptotically converges to the zero vector (or
equivalently, E{H(n)} is asymptotically conver-
gent to H,p) if the convergence parameter p is
selected to be

A Ox

0<u< T (22)
max

where Ams: denotes the maximum eigenvalue of
the matrix Rxx. Notice that a more restrictive
and sufficient, but simpler and more practical
condition for the convergence can be given by

V2n
o<u< No, ° (23)

We next derive an expression for the mean-
squared estimation error o(x). Taking the ex-
pectation after squaring both sides of (11) yields.

oi(n) =E{é&(n)}

=Emin+ EVI(0) X(n) XT(n)V(n)}
= 2E{VT(n) X(n) emin{n)}, (24)

where &niy is obtained by using (10) in (12) so that
ém‘n:'E{dz(n)}_HoTpt Rax. (25)

The last expectation of (24) becomes zero by
orthogonality principle (i.e., X(n) and emx(n) are
orthogonal each other). It thus follows under the
independence assumption { Assumption 2) that
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6%(n) = Emn+ tr{K(n) Ryx }, (26)

where K(n) is defined in (8), and ¢7{-} represents
the trace of {-}.

Finally, we derive an expression for K(») to
complete the analysis. Substituting (9) in (8)
leads to

Kn+1)=K(n) + 2 E[sign{iX(n) XT(n)} &(n)]
+uEV(n) signiX"(n)te(n)]
+uElsign{X(n)}Vi(n)eln)]. (27)

Before simplifying (27) any further, we define
the followings :

ri-;=Eix(n—i)x(n—7j)}, (28)
A=E[sign{X(n) XT(n)}], (29)

Q) =E[VH(n)} X (n) X'(n)V(n) sign{X (n) X"(n)}],
(30)
and for 0<k, 6<N—1,

T(k, ) =E{x(n—k)x(n— Q) signiX(n) XT(n)}}.
(31)

Also, for 1<4,7<N, let Ay, Qi(n), Ti;(k, ), and
Kii{n) denote the (7,7)-th entries of the matrices
A Q(n), T(k, 2), and K(n), respectively. Note
that A and T(k, £) are constant matrices, while
the matrix Q(#) is time-varying.

The following results can be derived by invok-
ing the Gaussian assumption and employing Pr-
ice’s theorem [9]. These are to be used to evalu-
ate (27).
elet x; and x, be zero-mean, jointly Gaussian

random variables with covariance matrix

2
=l 7]

r o

Then,

E{sign{xl}sign{xg}}=% sin! :2 . (32)

x
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*Let x|, x;, x3, and x4 be zero-mean, jointly Ga-
ussian random variables with covariance matrix

2
Oy 712 713 7y

2
R = Yiz Oy 723 7y

2 ,
Y13 ra 0, ¥y

2
Y4 724 ¥ Oy

and let |rsy| <oZ. Then,

Elxyxosignixstsign{xgt}

_2 7 2 1
= Y12 Stn 2 +7f

Ox Vai—ra
{[7’14 ratrigryl - % (713723714 724]}. (33)

It is shown in Appendix that the mean-squared
behavior K(n) in (27) can be expressed as

Kn+1)=Kn) + 2 [{ma A +Q(n)] —

\/;2; —;‘:—x [K(n) Rxx+ Ryx K(n)]. (34)

The matrices A and Q(#») are also evaluated in
Appendix.

Il. Experimental Results

Here, we present the experimental results for
which the SR algorithm is used in the third-order
adaptive predictor to demonstrate the validity of
our derivations. The primary input d(») is mo-
deled as an autoregressive process given by

din)={n)+09d(n-1)-0.1dn—2)—-0.2d(n—-3),
(35)

where {(n) is a pseudorandom white Gaussian pro-
cess with zero-mean and variance such that d(n)
has unit variance. The reference input x{(z) to
the predictor is

x(n)=d(n-1). (36)

Note that the ratio of the maximum and minimum



WX /7H5-A1¢E ] A & ol th 3 Signed Regressor HAH A5 3-8 429 284

eigenvalues of the autocorrelation matrix Rxx is
approximately 16.3 in this case,

The results are produced by taking the ensem-
ble averages over 100 independent runs using 10,
000 samples each. The parameters u are selected
to be 0.005. Figure 1 illustrates the theoretical
and empirical results of the mean behavior E{ A
(n)} for the ¢-th element of the adaptive filter co-
efficient vector H(n), and Figure 2 shows those
of the mean-squared behavior K;;(n) of the i-the
coefficient by plotting the three diagonal elem-
ents of K(n). It can be seen that the theoretical
curves agree with simulation ones fairly well.

E(H(s)}

0.0 \
2

-0.27 e -+
0 time (a) 10000

Figure 1. Mean behavior of the three coefficients : (a)E
{m(n)}, (D)E{R(n)}, (c)E{h(n)};1=simul-
ation result, 2= theoretical result.

0.81
K, (m
2
1
0'0 L + Ly
0 time (n) 10000
0.06
Kpp(n)
\ 2
1
0.0 v ‘
0 time (1) 10000

0.04

Ky (0)

0.0 +
0 time (n) 10000

Figure 2. Mean-squared behavior of the three coefficie-
nts ; 1 =simulation result, 2=theoretical re-
sult,

V. Conclusion

In this paper, we investigate the statistical be-
havior of the SR algorithm when signals involved
are zero-mean, wide-sense stationary, and Gaus-
sian. By making use of Price’s theorem and fur-
ther employing the independence assumption, a
set of nonlinear evolution equations that chara-
cterizes the mean and mean-squared behavior of
the filter coefficients as well as the mean-squared
estimation error is derived. A condition for the
mean convergence is also found. Experimental re-
sults show that our theoretical derivations agree
with simulations very well.

We have obtained some empirical results in
which the performance of the SR algorithm is qu-
ite comparable with that of the LMS or the sign
algorithm. We have had, however, difficulties in
deriving analytical expressions for the steady-
state mean-squared responses of the SR algor-
ithm in order to make quantitative comparisons
among other competing algorithms, such as the
LMS or the sign algorithms. We are currently
working on obtaining these results as well as con-
ditions for the mean-squared convergence of the
algorithm,

Appendix Derivation of (34)
From (27), using the result in (19), we have

E(V(n)sign{XT(n)te(n)]
=E{V(n) E(sign{X"(n)} e(n) [V(n)]}
1033
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= V2L ko0 R, (37)

Simularly,
o T —_J2 1 .
ElsigniX(n)}Vi(n)e(n)]= T o Rxx K(n).
(38)

Using (11) as well as orthogonality principle, it
is easy to simplify the last term of (27) to

El[sign{X(n) XT(n)} &(n) ] = Emin A+ Q(n), (39)

where the matrices A and Q(n) are defined in
(29) and (30), respectively, We now need to com-
pute A and Q(#). From (29) and (32), it follows
that

Aij=Ef{signix(n—i+1)}signix(n—7+1)}}

=2 it i (40)

T
x

Also, since

Vi(n) X(n) X" (n) V(n)=

N-1 N-1

5 QZ vi+1(n) ver1(n) x(n—k) x(n—0), (41)
k=0 ¢=0

by the independence assumption once again, we
have

Q) =Y Y Elvesi(m) o)1 Tk, ©,  (42)

k=0 € =0

or

Qim) =L T Kiiln) | cxer Tk, 0). (43)

where v;(n) denotes the i-th element of the vec-
tor V(n), and T(k, ) is defined in (31). In order
to evaluate (42), we have to compute T(k, £) or
its elements T;;(k, ). Using the result in (33), it
is not difficult to compute Ti;(k, £) :i.e., for 0<
k, 8<N-1,ifi=j

1034

Tij(k, ©) =rc-q, (44)

and 1f £#

+2 1
T Vet~ v,
[7e—j1 7o i1+ Premit1 70 j41]
_2 i
L \/;?__,,_7_—]
bre-iv17e-it1 + 76 -1 %o- j+1 ). (45)

Therefore, using (37)-(45), we obtain (34), and
are able to completely evaluate the mean-squared
behavior of the coefficient misalignment vector.
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