• Title/Summary/Keyword: least energy solution

Search Result 62, Processing Time 0.024 seconds

Nonlinear Optimal Control of an Input-Constrained and Enclosed Thermal Processing System

  • Gwak, Kwan-Woong;Masada, Glenn Y.
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.2
    • /
    • pp.160-170
    • /
    • 2008
  • Temperature control of an enclosed thermal system which has many applications including Rapid Thermal Processing (RTP) of semiconductor wafers showed an input-constraint violation for nonlinear controllers due to inherent strong coupling between the elements [1]. In this paper, a constrained nonlinear optimal control design is developed, which accommodates input constraints using the linear algebraic equivalence of the nonlinear controllers, for the temperature control of an enclosed thermal process. First, it will be shown that design of nonlinear controllers is equivalent to solving a set of linear algebraic equations-the linear algebraic equivalence of nonlinear controllers (LAENC). Then an input-constrained nonlinear optimal controller is designed based on that LAENC using the constrained linear least squares method. Through numerical simulations, it is demonstrated that the proposed controller achieves the equivalent performances to the classical nonlinear controllers with less total energy consumption. Moreover, it generates the practical control solution, in other words, control solutions do not violate the input-constraints.

A Solution to the Inverse Kinematic by Using Neural Network (신경 회로망을 사용한 역운동학 해)

  • 안덕환;양태규;이상효
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.15 no.4
    • /
    • pp.295-300
    • /
    • 1990
  • Inverse kinematic problem is a crucial point for robot manipulator control. In this paper, to implement the Jacobian control technique we used the Hopfield, Tank's neural network. The states of neurons represent joint velocities, and the connection weights are determined from the current value of the Jacobian matirx. The network energy function is constructed so that its minimum corresponds to the minimum least square error. At each sampling time, connection weights and neuron states are updated according to current joint positon. Inverse kinematic solution to the planar redundant manipulator is solved by computer simulation.

  • PDF

Atom Number Densities for Uranyl Nitrate Solution (질산우라늄용액의 구성원소별 원자수밀도)

  • Seung Gy Ro;Duck Kee Min;Jung-Kyoon Chon
    • Nuclear Engineering and Technology
    • /
    • v.14 no.3
    • /
    • pp.103-109
    • /
    • 1982
  • An empirical formula for determining water content as functions of uranium concentration and nitric acid normalities in uranyl nitrate solutions has been derived from a least-squares analysis of experimental data, i.e., uranium concentration, nitric acid normalities and solution densities for a large number of UO$_2$(NO$_3$)$_2$ solutions. The formula derived is Q=1-0.3628C-0.0327H$^{+}$ where Q, C, and H$^{+}$ stand for water content (g/cc), uranium concentration (g/cc), ana nitric acid normality, respectively. Atom number densities and nuclear criticality for hypothetical uranyl nitrate solutions have been calculated by using the empirical formula, ana compared with the results obtained on the basis of uranium concentration, nitric acid normality, and solution density. The empirical formula derived in this study seems to be useful in uranium concentrations ranging from 0.295g/cc down to 0.004g/cc and nitric acid normality from 5.06 to 1.00..00.

  • PDF

An Improved Coyote Optimization Algorithm-Based Clustering for Extending Network Lifetime in Wireless Sensor Networks

  • Venkatesh Sivaprakasam;Vartika Kulshrestha;Godlin Atlas Lawrence Livingston;Senthilnathan Arumugam
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.7
    • /
    • pp.1873-1893
    • /
    • 2023
  • The development of lightweight, low energy and small-sized sensors incorporated with the wireless networks has brought about a phenomenal growth of Wireless Sensor Networks (WSNs) in its different fields of applications. Moreover, the routing of data is crucial in a wide number of critical applications that includes ecosystem monitoring, military and disaster management. However, the time-delay, energy imbalance and minimized network lifetime are considered as the key problems faced during the process of data transmission. Furthermore, only when the functionality of cluster head selection is available in WSNs, it is possible to improve energy and network lifetime. Besides that, the task of cluster head selection is regarded as an NP-hard optimization problem that can be effectively modelled using hybrid metaheuristic approaches. Due to this reason, an Improved Coyote Optimization Algorithm-based Clustering Technique (ICOACT) is proposed for extending the lifetime for making efficient choices for cluster heads while maintaining a consistent balance between exploitation and exploration. The issue of premature convergence and its tendency of being trapped into the local optima in the Improved Coyote Optimization Algorithm (ICOA) through the selection of center solution is used for replacing the best solution in the search space during the clustering functionality. The simulation results of the proposed ICOACT confirmed its efficiency by increasing the number of alive nodes, the total number of clusters formed with the least amount of end-to-end delay and mean packet loss rate.

Recycling of Li2ZrO3 as LiCl and ZrO2 via a Chlorination Technique

  • Jeon, Min Ku;Kim, Sung-Wook;Lee, Keun-Young;Choi, Eun-Young
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.2
    • /
    • pp.271-278
    • /
    • 2021
  • In this study, a chlorination technique for recycling Li2ZrO3, a reaction product of ZrO2-assisted rinsing process, was investigated to minimize the generation of secondary radioactive pyroprocessing waste. It was found that the reaction temperature was a key parameter that determined the reaction rate and maximum conversion ratio. In the temperature range of 400-600℃, an increase in the reaction temperature resulted in a profound increase in the reaction rate. Hence, according to the experimental results, a reaction temperature of at least 450℃ was proposed to ensure a Li2ZrO3 conversion ratio that exceeded 80% within 8 h of the reaction time. The activation energy was found to be 102 ± 2 kJ·mol-1·K-1 between 450 and 500℃. The formation of LiCl and ZrO2 as reaction products was confirmed by X-ray diffraction analysis. The experimental results obtained at various total flow rates revealed that the overall reaction rate depends on the Cl2 mass transfer rate in the experimental condition. The results of this study prove that the chlorination technique provides a solution to minimize the amount of radioactive waste generated during the ZrO2-assisted rinsing process.

A study on the optimal design of robot arm (로봇 팔의 최적설계에 관한 연구)

  • 조선휘;김기식;김영진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.515-522
    • /
    • 1991
  • Determining the motion using optimal technique about traveling time and trajectory planning has been studied often in recent years, but the study of determining the optimal robot dimensions is rare, the authors attempt to find out the least driving torques and energy as the optimization of link length ratio referred to 2R SCARA and 3R robot manipulators. For the given linear path with triangular velocity profile, the inverse kinematic and dynamic problems are examined in order to lead into solution of problem, which is suggested for optimal design of link lengths. Accordingly, optimal link length ratio is obtained with respect to each case.

Accuracy Improvement of Lattice Parameters Measured from Electron Diffraction Data (전자회절을 이용한 격자상수의 측정 정확도 향상)

  • Lee, Sang-Gil;Song, Kyung;Kim, Jin-Gyu
    • Applied Microscopy
    • /
    • v.41 no.1
    • /
    • pp.75-79
    • /
    • 2011
  • For quantitative analysis of nano-crystal structure, we reported the accuracy improvement method of lattice parameters measured from electron diffraction. For calculation of Au lattice parameters used as a standard crystal structure, it was considered two different acquisition methods (detector and enegy-filter) and three different calculation methods (conventional, least-square and regression fit). As a result, the measurement reliability could be enhanced by using CCD camera which gives higher performance, while energy-filtering did not affect the improvement the camera constant accuracy. Also, the accuracy of lattice parameters could be improved up to $10^{-4}$ order by regression fitting with correction formula. Finally, it is expected that the combination of regression fitting and intensity extraction from energy-filtered precession electron diffraction gives a solution of quantitative structure analysis for unknown nano-crystals.

Prediction of Heat Transfer in Asymmetric Sudden Expansion Flows by using the Modified Boundary Layer Equations (비대칭 급확대 관로 유동장 내의 열전달 해석에 수정된 경계층 방정식의 적용 가능성 추정)

  • Lyu, Myoung-Seok;Maeng, Joo-Sung
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.14 no.4
    • /
    • pp.293-299
    • /
    • 1985
  • This paper describes an economical prediction procedure for heat transfer phenomenon through a channel containing an abrupt asymmetric expansion in flow cross-seetional area. Numerical solutions for the flow field are obtained by the finite difference numerical method applied to the modified boundary layer equations. Modified boundary energy equation is used to analyze heat transfer as modified boundary momentum equation. Predictions of the method compare very favorable with exprimental data. Results of this study by modified boundary layer equation are as follows : 1. The computation time required for the scheme is at least an order of magnitude less than for the numerical solution of the full Navier-stokes and Energy eguations. 2. In laminar flow, the maximum heat transfer occurs downstream of the reattachment point.

  • PDF

A Study on the Evaluation of the ESS Capacity of Considering for Charge-Discharge Characteristic and CO2 Emission in Jeju (배터리 충방전특성을 고려한 제주계통의 적정 ESS용량과 탄소배출량 산정에 관한 연구)

  • Ku, Bon-Hui;Cha, Jun-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.4
    • /
    • pp.455-460
    • /
    • 2014
  • South Korea's power consumption is increasing every year. For stable electric power supply, more generation facilities are needed. But it is not easy to build nuclear power generation facilities, so provision of renewable energy is thought of as the solution. For the system's stable management, practical use of energy storing system is needed. Currently, pumping up electric power station is considered most useful. In this study, we have calculated the least amount of energy storing device by considering the renewable energy, HVDC, and change in power for the appliance of ESS in Jeju system, according to The 6th Basic Plan for Long-term Electricity Supply and Demand. Also we have calculated the amount of the battery and about the load equalizing effect to use battery as power storing device. Finally, we have calculated the reduction of electricity generation and the reduction of $CO_2$ emission with this study.

Neutronics analysis of a 200 kWe space nuclear reactor with an integrated honeycomb core design

  • Chao Chen;Huaping Mei;Meisheng He;Taosheng Li
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4743-4750
    • /
    • 2022
  • Heat pipe cooled nuclear reactor has been a very attractive technical solution to provide the power for deep space applications. In this paper, a 200 kWe space nuclear reactor power design has been proposed based on the combination of an integrated UN ceramic fuel, a heat pipe cooling system and the Stirling power generators. Neutronics and thermal analysis have been performed on the space nuclear reactor. It was found that the entire reactor core has at least 3.9 $ subcritical even under the worst-case submersion accident superimposed a single safety drum failure, and results from fuel temperature coefficient, neutron spectrum and power distribution analysis also showed that this reactor design satisfies the neutronics requirements. Thermal analysis showed that the power in the core can be successfully removed both in normal operation or under one or more heat pipes failure scenarios.