Neutronics analysis of a 200 kWe space nuclear reactor with an integrated honeycomb core design |
Chao Chen
(Institute of Nuclear Energy Safety Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences)
Huaping Mei (Institute of Nuclear Energy Safety Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences) Meisheng He (Institute of Nuclear Energy Safety Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences) Taosheng Li (Institute of Nuclear Energy Safety Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences) |
1 | NASA, NASA Technology Roadmaps-TA3, Space Power and Energy Storage, NASA Technical Report, 2015. |
2 | A. Stanculescu, The Role of Nuclear Power and Nuclear Propulsion in the Peaceful Exploration of Space, IAEA, Vienna, 2005. |
3 | D.I. Poston, R.J. Kapernick, R.M. Guffee, Design and analysis of the SAFE-400 space fission reactor, AIP Conf. Proc.Am. Inst. Phys. 608 (1) (2002) 578-588, https://doi.org/10.1063/1.1449775. DOI |
4 | B.H. Yan, C. Wang, L.G. Li, The technology of micro heat pipe cooled reactor: a review, Ann. Nucl. Energy 135 (2020), 106948, https://doi.org/10.1016/j.anucene.2019.106948. DOI |
5 | D.I. Poston, The heatpipe-operated mars exploration reactor (HOMER), in: Tech Rep, LA-UR-00-5209, 2000, https://doi.org/10.1063/1.1358010. DOI |
6 | M.A. Gibson, S.R. Oleson, D.I. Poston, et al., NASA's Kilopower reactor development and the path to higher power missions, in: 2017 IEEE Aerospace Conference. IEEE, 2017, pp. 1-14, https://doi.org/10.1109/AERO.2017.7943946. DOI |
7 | M.S. El-Genk, J.M. Tournier, Performance analysis of potassium heat pipes radiator for HP-STMCs space reactor power system, AIP Conf. Proc.Am. Inst. Phys. 699 (1) (2004) 793-805, https://doi.org/10.1063/1.1649644. DOI |
8 | M.S. El-Genk, J.M. Tournier, SAIRS"d scalable amtec integrated reactor space power system, Prog. Nucl. Energy 45 (1) (2004) 25-69, https://doi.org/10.1016/j.pnucene.2004.08.002. DOI |
9 | M.A. Gibson, D.I. Poston, P.R. McClure, et al., The Kilopower reactor using Stirling TechnologY (KRUSTY) nuclear ground test results and lessons learned, in: 2018 International Energy Conversion Engineering Conference, 2018, p. 4973, https://doi.org/10.2514/6.2018-4973. DOI |
10 | P.R. McClure, D.I. Poston, M.A. Gibson, et al., Kilopower project: the KRUSTY fission power experiment and potential missions, Nucl. Technol. 206 (sup1) (2020) S1-S12, https://doi.org/10.1080/00295450.2020.1722554. DOI |
11 | T.S. Balint, Comparison of power system options between future lunar and mars missions, in: International Lunar Conference 2005 Proceedings, 2005. |
12 | M.S. El-Genk, Space reactor power systems with no single point failures, Nucl. Eng. Des. 238 (9) (2008) 2245-2255, https://doi.org/10.1016/j.nucengdes.2008.02.026. DOI |
13 | J.C. King, M.S. El-Genk, Submersion-subcritical safe space (S4) reactor, Nucl. Eng. Des. 236 (17) (2006) 1759-1777, https://doi.org/10.1016/j.nucengdes.2005.12.010. DOI |
14 | M.B. Chadwick, M. Herman, P. Oblozinsky, et al., ENDF/B-VII. 1 nuclear data for science and technology: cross sections, covariances, fission product yields and decay data, Nucl. Data Sheets 112 (12) (2011) 2887-2996, https://doi.org/10.1016/j.nds.2011.11.002. DOI |
15 | R.G. Rohal, T.N. Tambling, R.L. Smith, Testing of Uranium Nitride Fuel in T-111 Cladding at 1200K Cladding Temperature, 1973. |
16 | K. Li, L. Qian, X. Li, et al., BeO utilization in reactors for the improvement of extreme reactor environments - a review, Front. Energy Res. 9 (2021), 669832, https://doi.org/10.3389/fenrg.2021.669832. DOI |
17 | Y. Wu, J. Song, H. Zheng, et al., CAD-based Monte Carlo program for integrated simulation of nuclear system SuperMC, Ann. Nucl. Energy 82 (2015) 161-168, https://doi.org/10.1016/j.anucene.2014.08.058. DOI |
18 | D.I. Poston, R.J. Kapernick, R.M. Guffee, Design and analysis of the SAFE-400 space fission reactor, Am. Ins. Phys. 608 (1) (2002) 578-588, https://doi.org/10.1063/1.1449775. DOI |
19 | J. Li, Q. Zhou, Y. Xia, et al., Study on reactivity control strategies for the thermoelectric integrated space nuclear reactor, Ann. Nucl. Energy 145 (2020), 107607, https://doi.org/10.1016/j.anucene.2020.107607. DOI |
20 | INTERNATIONAL ATOMIC ENERGY AGENCY, Thermophysical Properties of Materials for Nuclear Engineering: A Tutorial and Collection of Data, Non-serial Publications, IAEA, Vienna, 2008. |
21 | M.S. El-Genk, J.M. Tournier, A review of refractory metal alloys and mechanically alloyed-oxide dispersion strengthened steels for space nuclear power systems, J. Nucl. Mater. 340 (1) (2005) 93-112, https://doi.org/10.1016/j.jnucmat.2004.10.118. DOI |