• Title/Summary/Keyword: learning trajectory

Search Result 252, Processing Time 0.021 seconds

The Design of Fuzzy-Neural Controller for Velocity and Azimuth Control of a Mobile Robot (이동형 로보트의 속도 및 방향제어를 위한 퍼지-신경제어기 설계)

  • Han, S.H.;Lee, H.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.4
    • /
    • pp.75-86
    • /
    • 1996
  • In this paper, we propose a new fuzzy-neural network control scheme for the speed and azimuth control of a mobile robot. The proposed control scheme uses a gaussian function as a unit function in the fuzzy-neural network, and back propagation algorithm to train the fuzzy-neural network controller in the frame-work of the specialized learning architecture. It is proposed a learning controller consisting of two fuzzy-neural networks based on independent reasoning and a connection net woth fixed weights to simply the fuzzy-neural network. The effectiveness of the proposed controller is illustrated by performing the computer simulation for a circular trajectory tracking of a mobile robot driven by two independent wheels.

  • PDF

Deep reinforcement learning for base station switching scheme with federated LSTM-based traffic predictions

  • Hyebin Park;Seung Hyun Yoon
    • ETRI Journal
    • /
    • v.46 no.3
    • /
    • pp.379-391
    • /
    • 2024
  • To meet increasing traffic requirements in mobile networks, small base stations (SBSs) are densely deployed, overlapping existing network architecture and increasing system capacity. However, densely deployed SBSs increase energy consumption and interference. Although these problems already exist because of densely deployed SBSs, even more SBSs are needed to meet increasing traffic demands. Hence, base station (BS) switching operations have been used to minimize energy consumption while guaranteeing quality-of-service (QoS) for users. In this study, to optimize energy efficiency, we propose the use of deep reinforcement learning (DRL) to create a BS switching operation strategy with a traffic prediction model. First, a federated long short-term memory (LSTM) model is introduced to predict user traffic demands from user trajectory information. Next, the DRL-based BS switching operation scheme determines the switching operations for the SBSs using the predicted traffic demand. Experimental results confirm that the proposed scheme outperforms existing approaches in terms of energy efficiency, signal-to-interference noise ratio, handover metrics, and prediction performance.

An iterative learning and adaptive control scheme for a class of uncertain systems

  • Kuc, Tae-Yong;Lee, Jin-S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.963-968
    • /
    • 1990
  • An iterative learning control scheme for tracking control of a class of uncertain nonlinear systems is presented. By introducing a model reference adaptive controller in the learning control structure, it is possible to achieve zero tracking of unknown system even when the upperbound of uncertainty in system dynamics is not known apriori. The adaptive controller pull the state of the system to the state of reference model via control gain adaptation at each iteration, while the learning controller attracts the model state to the desired one by synthesizing a suitable control input along with iteration numbers. In the controller role transition from the adaptive to the learning controller takes place in gradually as learning proceeds. Another feature of this control scheme is that robustness to bounded input disturbances is guaranteed by the linear controller in the feedback loop of the learning control scheme. In addition, since the proposed controller does not require any knowledge of the dynamic parameters of the system, it is flexible under uncertain environments. With these facts, computational easiness makes the learning scheme more feasible. Computer simulation results for the dynamic control of a two-axis robot manipulator shows a good performance of the scheme in relatively high speed operation of trajectory tracking.

  • PDF

Enhancing Geometry and Measurement Learning Experiences through Rigorous Problem Solving and Equitable Instruction

  • Seshaiyer, Padmanabhan;Suh, Jennifer
    • Research in Mathematical Education
    • /
    • v.25 no.3
    • /
    • pp.201-225
    • /
    • 2022
  • This paper details case study vignettes that focus on enhancing the teaching and learning of geometry and measurement in the elementary grades with attention to pedagogical practices for teaching through problem solving with rigor and centering equitable teaching practices. Rigor is a matter of equity and opportunity (Dana Center, 2019). Rigor matters for each and every student and yet research indicates historically disadvantaged and underserved groups have more of an opportunity gap when it comes to rigorous mathematics instruction (NCTM, 2020). Along with providing a conceptual framework that focuses on the importance of equitable instruction, our study unpacks ways teachers can leverage their deep understanding of geometry and measurement learning trajectories to amplify the mathematics through rigorous problems using multiple approaches including learning by doing, challenged-based and mathematical modeling instruction. Through these vignettes, we provide examples of tasks taught through rigorous problem solving approaches that support conceptual teaching and learning of geometry and measurement. Specifically, each of the three vignettes presented includes a task that was implemented in an elementary classroom and a vertically articulated task that engaged teachers in a professional learning workshop. By beginning with elementary tasks to more sophisticated concepts in higher grades, we demonstrate how vertically articulating a deeper understanding of the learning trajectory in geometric thinking can add to the rigor of the mathematics.

Abnormal Traffic Behavior Detection by User-Define Trajectory (사용자 지정 경로를 이용한 비정상 교통 행위 탐지)

  • Yoo, Haan-Ju;Choi, Jin-Young
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.5
    • /
    • pp.25-30
    • /
    • 2011
  • This paper present a method for abnormal traffic behavior, or trajectory, detection in static traffic surveillance camera with user-defined trajectories. The method computes the abnormality of moving object with a trajectory of the object and user-defined trajectories. Because of using user-define based information, the presented method have more accurate and faster performance than models need a learning about normal behaviors. The method also have adaptation process of assigned rule, so it can handle scene variation for more robust performance. The experimental results show that our method can detect abnormal traffic behaviors in various situation.

Research on Professional Groups through Learning of Professional Game Players (전문가 집단 양성을 위한 프로게이머 발달 및 학습 모형 연구)

  • Kim, Sa-Hoon H.;Park, Sang-Wook W.
    • Journal of Korea Game Society
    • /
    • v.10 no.4
    • /
    • pp.23-34
    • /
    • 2010
  • The current interests in e-sports is being extended to the fields of education these days. Professional game players, so called as 'Pro-Gamers', therefore, should be recognized as human resource for education, and the theoretical foundation for them needs to be established. This study examines informal learning styles, motivation, and interactions among professional game players in South Korea. The aim of this grounded theory study is to discover the trajectory of professional game players' experiences and explain what properties and interactions they are facing depending on the stage of the trajectory. This study conceptualizes educational meaning within and across the society of StarCraft Pro-Gamers, providing suggestions for the management of human resource using models constructed. Data was analyzed by interviewing 1 consultant, 2 directors and 9 Pro-Gamers. By analyzing the data, this study explored what learning strategies Pro-Gamers construct and apply in their trajectory as Pro-Gamers. It includes how they organize learning, how they formulate their motivation and goals, how they cooperate and compete, what curricula they adapt, how they become one of the ace players overcoming their slump, and how informal education works in practice in the interaction among members of a StarCraft Pro-Gamer team. Finally, in this paper the stage theory was presented. It is argued that when the stage of the players shifts (Stage Shifting). It also brings changes to proficiency properties, emotional properties, interactional properties and educational properties related to each stage. Stages are categorized by five levels: Enjoying, Struggling, Achieving, Slumping, and Recovering. Although each stage has its own properties, the stages are grouped by two main properties, one of which is a Communicative Stage and the other is a Practicing Stage.

A study on complexity of deep learning model (딥러닝 모형의 복잡도에 관한 연구)

  • Kim, Dongha;Baek, Gyuseung;Kim, Yongdai
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.6
    • /
    • pp.1217-1227
    • /
    • 2017
  • Deep learning has been studied explosively and has achieved excellent performance in areas like image and speech recognition, the application areas in which computations have been challenges with ordinary machine learning techniques. The theoretical study of deep learning has also been researched toward improving the performance. In this paper, we try to find a key of the success of the deep learning in rich and efficient expressiveness of the deep learning function, and analyze the theoretical studies related to it.

Intelligent Control Design of Mobile robot Using Neural-Fuzzy Control Method (뉴럴-퍼지 제어기법에 의한 이동로봇의 지능제어기 설계)

  • 한성현
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.4
    • /
    • pp.62-67
    • /
    • 2002
  • This paper presents a new approach to the design of cruise control system of a mobile robot with two drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy-neural network and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized loaming architecture. It is Proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tucking of the speed and azimuth of a mobile robot driven by two independent wheels.

Real-Time Fuzzy Neural Network Control for Real-Time Autonomous Cruise of Mobile Robot (이동로봇의 자율주행을 위한 실시간 퍼지신경망 제어)

  • 정동연;김종수;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.312-318
    • /
    • 2003
  • We propose a new technique for the cruise control system design of a mobile robot with three drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy neural network and back propagation algorithm to train the fuzzy neural network controller in the framework of the specialized teaming architecture. It is proposed a learning controller consisting of too neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a mobile robot driven by three independent wheels.

  • PDF

Trajectory Study of Self-organizing Fuzzy Control and Its Application to Inverted Pendulum Control (자기구성 퍼지네어의 궤적연구 및 도립진자 제어 적용)

  • 박정일;류재규
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.12
    • /
    • pp.35-44
    • /
    • 1994
  • In this paper, we propose a new modification method of the look-up table in self-organizing fuzzy control using look-up table. This method has the property that look-up table is modified to have fast response property. Its principle is that the controller forces the trajectory to go into the fast respose region which the error change amount is larger than the error at initial time whenever the reference or disturbance change. Also we introduce the variable learning speed coefficient which is proportional to distance from switching curve. And to demonstrate the applicability of the proposed method, we had simulation study for some examples and esecuted pole balance experiments with inverted pendulum.

  • PDF