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Abstract

An iterative learning control scheme for tracking con-
trol of a class of uncertain nonlinear systems is presented.
By introducing a model reference adaptive controller in
the learning control structure, it is possible to achieve
zero tracking of unknown system even when the upper-
bound of uncertainty in system dynamics is not known
apriori. The adaptive controller pull the state of the
system to the state of reference model via control gain
adaptation at each itcration, while the learning con-
troller attracts the model state to the desired one by
synthesizing a suitable control input along with itera-
tion numbers. In the controller role transition from the
adaptive to the learning controller takes place in gradu-
ally as learning proceeds. Anotlier feature of this control
scheme is that robnstuess to bounded mput disturbances
is guaranteed by the linear controller in the feedback loop
of the learning control scheme. In addition, since the
proposed coutroller does not require any knowledge of
the dynamic parameters of the system, it is flexible un-
der uncertain environments. With these facts, computa-
tional easiness makes the learning schene more feasible.
Computer simulation results for the dynamic control of
a two-axis robot manipulator shows a good performance
of the scheme in relatively high speed operation of tra-
jectory tracking.

1 Introduction

The interest in application of learning control {2, 5, 7, 8, 11, 12,
13] to the repcatible dynamic systems, such as robot manipula-
tors, has been growing because of its simplicity and straightfor-
wardness. Since the iterative learning control does not require
of knowledge of exact dynamic mode: of the system, it pro-
vides a flexible and adaptively opcrating characteristic under
uncertain environments. One of significant advantages of the
iterative learning coutrol over the usual parametric adaptive
control lies in its computational easiness due to the fact that it
makes a direct correction to actuating signal for the exact re-
sponse of the system, instead of input correction via parameter

adaptation.

In this paper we present an iterative learning control method.

Firstly, for a class of uncertain multi-input systems zero track-
ing is achieved via the lcarning control procedure with iteration

number. Then it will be shown that the learning control can
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be applied for tracking control of unknown nonlinear dynamical
systems by combining a model reference adaptive controller. A
suitable reference input along the desired trajectory is systhe-
sized by the learning controller, while the response of the mod. i
is followed by that of the plant through control gain adaptation
in the adaptive controller. After perfect learning, the feedfor-
ward control input signal for the desired system response will be
automatically generated from the learning controller, while the

adaptive controller plays a main role at initial stage of learning.

The presentation of the paper is as follows. In section 2, an
iterative learning control scheme for the target class of uncer-
tain systems is introduced and zero tracking is achieved with
iteration numbers. As an extension of the control scheme, in
order to apply the learning control scheme to an unknown sys-
tem in which the upperbound of the uucertain system dynam-
ics are not avajlable apriori, a model reference adaptive control
technique is utilized. TFinally, section 3 contains discussion and

concluding remarks.

2 An Iterative Learning Control

Uncertain Multi-input Systems with Known
Bound

2.1

Consider a class of multi-input linear systems described by
() = Apzr(t) + BLUL(t) (1)

where zg, € R*", Uy, € R*, and A, By are given by

TL1
ap(t) = .
L2
4 O'I.)(TL 111)(".
Al =
M —A2ain
B Oan
L =
By

We assume that Aq, Ap, Br; are unknown matrices, but known

to be bounded such that
A IS A

A2) 0<6,1< B,y < 8a1



A3)  ||1BLill £ o

for j = 1,2, where an induced matrix norm || Af| for A € R**?
is defined as
| Av|

AN = sup{M : M =
fol

for lo| #0)
with uclidean norm |v| for v € R".

Our control objective is as follows: for an addmissible tra-
jectory z4(t) given in a compact subset of R*™, it is desired for
the uncertain system (1) to track x4 for all t € [0,¢s] with ¢
being final time.

We will demonstrate in the sequal that, in spite of un-
certainties in system dynamics, the control objective may be
achieved by an iterative learning control method to be pre-
sented. The control input in the iterative learning control
scheme consists of a feedback error signal from a linear con-
troller and a feedforward control input to be adjusted through
repetitive trial for each step. That is, as for the reference con-
trol input and the updatation law at the i — th trial, we choose

Ui and H**! such that

UL(t) = H'(t)+ EL(t) 2)
H*Y() = I(t)+ BEL(®) (3)
Ei(t) = Lz'(t) (1)

where L € R™™ represents a positive definite fecdback gain
matrix to be chosen below and 3 a positive constant (0 < 8 <

2), and 2* stands for
(1) = ely(t) + aeh, ()

for a positive constant @ and el (t) = v4(1) — 2% (t) denotes the
system state deviation from the desired command trajectory
24(t) € R, Further, we set the initial conditions e‘IL(O) =0
for all 7 = 1,2,... and [[}(t) = O for all ¢ € [0,¢7]. The error

equation is obtained as
é = Apely + BL(Uy - U}), (5)

where Uy denotes the desired unknown input for the uncertain

system (1) to track the desired state trajectory zg4.

Now, the system reponse of the reference model is shown to

be convergent.

Theorem 1: Suppose that the feedback gain ¢ and L are

chosen such that

1.
CI)BO = (BLI“EBIAI)L>O
C2)De = BulL >0
C3)dy = Amin((2 = B)Do) - 2(a+ A2) > 0
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Cayd, =

1
’\min((2 - ﬂ)BO + (11) - '&)\1 >0
2
a?d,

a symmetric positive definite matrix and

C5)d3 (11 - >0,

where Dy denotes

Amin(’) the minimum eigenvalue of (-).

Then the iterative learning control scheme (2),(3),(4) ap-
plied to the uncertain system (1) is convergent in the sense

that lim;—oe}(t) = 0 for all t € [0, 1;].

Proof: At i = 1, it is not difficult to show the exisitence of

feddback gains a, L such that for a given constant eg

82\U

let| < &2|Ud) < ep
@

where a positive constant & depends on feedback gains a, L and

system constants ;.  Ilence, V! is bounded for all ¢ € [0, 1y].

At ¢ > 2, define an index functional

. t . .
Vi) = / (F()TD(F(r)dr  forte0,¢]  (6)
0
where
T'=p8Dg
Letting
() = #) - ()
w(t) = effl) — el (1),
we get
2(t) = w(t) + aw.
Substituting (2) for U} (t) in (5) yields
él 0 I b,
€12 —-Ay—aDy -Ay—-Do ehs
0] i\
+ (Ug - HY) ]
Br

By subtracting this from the equation at (i + 1) — th iteration

and using (3), we obtain
1 )
z= —(Do —al 4+ AZ)Z - a(aI - (A2 —_ ;;A]))’U) . (8)

Define
AV(H) = V() - Vi(1).

Then, after some calculation with #, z, we obtain

¢ )
AV /(zTI‘z-I—?zTI‘z‘)d‘r
0
. t
—273—/(zTD12
a

2a:T(al - (Ag - %Al))w)dr

—zT2 — a(2 - B)wT Dow



t - e 9
/ (UJFDl’lb + T Ayw + wlA o+ aszDgw)dr
0

< =Tz a2 - guw Dyw
_ Tl)./‘Jl(rl3(a2wTw + wlw))dr
< 0, (9)
where
Dy = (2-78)Do—2al +2A,
Dy = (2-8)Bo+al + %LA;.

Therefore, V(1) converges to a constant value forcing AV (¢)

to be driven to zero. In addition, since

Av < -tz <, {10}

it is clear that 2(w and w) — 0 for all ¢ € [0,2;] and hence
% — 0 as i goes to infnity for all ¢ € [0,¢;]. With this fact the

equation (8) implies that 2'(e}; and €},) — 0 as i — co. AA

From this result and the learning rule (3), one can see that
the feedforward control input JI* converges to a constant value
for each ¢t € [0,¢7]. That is, |II'*! — H'| — 0 as ¢ — oo.
Actually, the eror equation (7) implies that the fixed value is
the desired control input Uy for each t € [0,t4], since By, is

positive definite.

Figure 1 shows the schematic diagram of learning controller
with a feedback and fedforward controller. After perfect learn-
ing, the feedforward controller is equiped with an inverse dy-
namic model of the uncertain plant. Note also that for the
updation and generation of the sampled feedforward control
input sequence /{* in the learning cortroller, a mapping rule
similar to the one introduced in [8] may be utilized to save the

meniory storage.

xg M
TRAJECTORY
PLANNER
#4)
LEARNKING
RULE
Xg . )
O LINEAR —- (O R0BOT
* CGNTROLLER
1y
%g= ( Qg dg)
x)=(a’a))

Figure 1: Schematic Diagram of the Learning Controller
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2.2 Extension to a Class of Nonlinear Systems
with Unknown Bound

In this subsection we will apply the iterative learning control
scheme to a class of unknownn nonlinear systems by providing
a suitable reference input for a model reference adaptive con-
troller. Let the target class of nonlinear systems be described

by the following set of equations.

(t) = Alz(t)z(t) + Bz(t))U (11)
where
A( (t)) _ Oan Inxn
T Aue() Ax(a(1)
B(x(1)) Orxn
By(z(t))

with z € R?" and the control input vector U € R™, and
bounded unknown matrices Aj, Ay, By € R™*™ and By posi-

tive definite.

Since the upperbound of system submatrices are assumed
not to be known apriori, the iterative learning control in pre-
vious subsection can not be applied directly. Hence, a model
reference adaptive controller is incorporated so as to achieve
zero tracking of the unknown system (11). Assume that a refl-
erence model is given by (1) in which the submatrices Ay, A2
are chosen to be matrices of strictly Herwitz and By positive
definite constant matrix. Let the control input for the plant
(11) at 1 - th iteration be

Ui(t) = KLt (1) + KL{OUL(L),

where K7}, I}, are given by

K, = [ KL RS

[\'.;:J = (L;l Jnxn
. i

]\; = (,l;“ Iixn

for j=1,2.

Further, we assume that the rate of control gain adaptation
in (12) is much faster than that of the system matrices change
at each sampling interval. Then, by utilizing the MRAC theory,
we obtain an adaptation law for the control input gains K, and
K, such that

Ix; = 71E;,ziT
i i il .
K, = mEUL, (13)

where Ex‘; denotes



Ei = Pyl + Poch
with ef = z{ — z* and P;, P; submatrices of a solution matrix

P for the Lyapunov equation(Appendix).

In view of the result on learning control in the previous
subsection along with the adaptive scheme, the operating char-

acteristic of the closed-loop system is described as follows:

Theorem 2: Consider the class of unknown nonlinear sys-
tems (11), and the stable and minimal reference model (1)
with the adaptive control action and the control gain adap-
tation law given by (12),(13). Let the reference control input
U} (1) be synthesized iteratively via the learning rule (2),(3),(1)
with the initial conditions €} (0) = 0 for all i = 1,2, .... Then,
the state 2°() of the system (11) is convergent in the sense that
lim;__o€'(t) = 0 for all ¢ € [0,¢5].

We give a brief sketch of a proof of the theorem.

Proof:At each trial, the model reference adaptive control mech-
anism will force the system state z'(t) to follow the response
of the reference model =% (¢), while the learning controller will
drive % (2) to the desired command state z4(t). This implies
that the tri-states linkage in the controller is convergent such
that 2%(t) — 2% (t) — z4(t) as i — o0o. That is, e'(1) and e} (1)

vanish asymptotically for all ¢ € [0,1;]. AA

Figure 2 shows the schematic diagram of the controller. It
comnsists of two feeedback loops for an adaptive and a learning
controller:
the inner loop drives the system states to that of the reference
model by tuning the control parameters with an adaptation al-
gorithm and the outer loop synthesizes an appropriate control
input for the state of reference model to follow the desired tra-
jectory. At the initial stage of learning, where there may exist
large tracking error, the adaptive controller will play a domi-
nant role, while the learning controller will generate a desired

input signal after perfect lcarning.

REFERENCE|
HODEL

TRAJECTOR

PLANNER

ALGORITHN

Figure 2: Schematic Diagram of the Adaptive and Learning

Controller

An attractive feature of the controller described in this sec-
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tion is that it does not require the knowledge of any system
parameters and is entirely based on the desired trajectory and
the actual state trajectories of the system and the reference

model which are directly available.
3 Discussion and Conclusions

An iterative learning control scheme for a class of uncertain
dynamical systems is described in this paper. In case where
the upperbound of the system submatrices are not known apri-
ori, a model reference adaptive controller is introduced in the
learning controller, so that they cooperate in the closed loop
operation by exchanging their role in generating a suitable con-
trol input action and control parameters. An attractive feature
of the control scheme is that it does not requires any knowl-
edge of the dynamic parameters of the system. The simplicity
of arithmetic operation invoved in calculation of the control ac-
tion makes the proposed controller suitable for implementation
in on-line control of the target class of dynamic systems with

high sampling rates.

Appendix : Derivation of a MRAC

On applying the adaptive control input (12) to the nonlinear

system (11), we obtain
&= As + BUL, (14)

where A, B denote

N O I
A = ,
Ay + B1Kgy Ay + By Ky,
. (@]
o=
DK,

and we suppressed the superscript i. The error equation for the

reference model (1) and the controlled system (11) becomes

é= Ape+ Az + ]}UL (15)
where
¢ = xp—a
) . [o o ]
A = Ap-A= . -
A Ar
. . &)
B = Bp-D= N
I

In deriving an adaptation law for the control gains, we take a

Lyapunov function candidate
V(1) = eTPe+ tr(AT Ry A) + tr(BT R, B) (16)

where tr denotes trace with symmetric positive definite matri-



ces P and Ry, R;. Differentiating V along the system trajectory
yields

Vi) = T(ATP+ PAL)e
+ 217‘(/1T(1)61'T+R1;1))
+ 2r(BT(PeUI + RyB)). )

Letting P be the solution of Lyapunov equation for the refer-

ence model

ATP+ PAL = —Q, (18)
and letting 1{,1} be

Ay = R Epal

4; = _RI;EPT;

B = ~R7pEUF, (19)

where E, denotes
E, = Pyey + Paey,

and P, P3, Ri3(i = 1,2) represent submatrices of P and R;

such that

p - | BB
P P
R e}
R = n Ry = Ry O ‘
o] RIB (0] Rzg
we obtain
V() = =T (1)Qe(t), (20)

which is a negative definite function of €, in view of a positive
definjte symmetric matrix Q. Applying the control input and
adaptation law (12),(19) to the system (11), we have from (20)

that the state error e asymptotically converges to zero in time.

However, in order for the adaptive law (19) to be feasi-
ble with unknown system matrices A, F, the adaptation law
should be modified in light of detailed consideration of system
dynamics. This is done via a reasonable assumption in the
operating condition of closed-loop system. That is, since we
have assumed that the controller gains K, and K, change rel-
atively much faster than the unknown system matrices A, B in
each sampling interval, the system matrices can be treated as
slowly time-varying compared with the controller gains. This

assumption implies that the adaptation law (19) is simplified

as
Ko = mEaT
Koy = milel
K. = mEUL 2
u Y2 EpUp, ( 1)

967

where we have chosen R;3(i = 1,2) € R™” in (22) such that

for positive constants ¥y, v2
1
Ry = =B
Vi

With the control input and gain adaptation law (12),(22), the
negative semi-definite V(t) quarantees that the state error e(t)
is driven zero asymptotically as ¢t — oc. However, since V(t)
is not a function of system parameter crror, it is not obvious
whether the system parameter ervors 4 and B will converge
to zero. Nevertheless, note that the adaptation laws (22) and
control input (12) do not depend on the system dynamic model
(11), but depend only on the states and its errors between the

reference model and the controlled system.
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