Acknowledgement
The Institute of Information & Communications Technology Planning & Evaluation(IITP) grant funded by the Korea government (MSIT) (no. 2021-0-00851, On-demand data based network intelligence framework technology development).
References
- Ericsson, Ericsson mobility report, 2020. https://www.ericsson.com/4ac68e/assets/local/reports-papers/mobilityreport/documents/2020/june2020-ericsson-mobility-report.pdf
- H. Holtkamp, G. Auer, S. Bazzi, and H. Haas, Minimizing base station power consumption, IEEE J. Sel. Areas Commun. 32 (2014), no. 2, 297-306. https://doi.org/10.1109/JSAC.2014.141210
- C. Liu, B. Natarajan, and H. Xia, Small cell base station sleep strategies for energy efficiency, IEEE Trans. Veh. Technol. 65 (2015), no. 3, 1652-1661.
- E. Oh and B. Krishnamachari, Energy savings through dynamic base station switching in cellular wireless access networks, (IEEE Global Telecommunications Conference GLOBECOM 2010, Miami, FL, USA), 2010, pp. 1-5.
- E. Oh, K. Son, and B. Krishnamachari, Dynamic base station switching-on/off strategies for green cellular networks, IEEE Trans. Wirel. Commun. 12 (2013), no. 5, 2126-2136. https://doi.org/10.1109/TWC.2013.032013.120494
- S. Song, Y. Chang, X. Wang, and D. Yang, Coverage and energy modeling of HetNet under base station on-off model, ETRI J. 37 (2015), no. 3, 450-459. https://doi.org/10.4218/etrij.15.0114.0669
- A. Kumar and C. Rosenberg, Energy and throughput trade-offs in cellular networks using base station switching, IEEE Trans. Mob. Comput. 15 (2016), no. 2, 364-376. https://doi.org/10.1109/TMC.2015.2416181
- M. Feng, S. Mao, and T. Jiang, Base station on-off switching in 5G wireless networks: Approaches and challenges, IEEE Wireless Commun. 24 (2017), no. 4, 46-54.
- W.-T. Wong, Y.-J. Yu, and A.-C. Pang, Decentralized energy-efficient base station operation for green cellular networks, (IEEE Global Communications Conference (GLOBECOM), Anaheim, CA, USA), 2012, pp. 5194-5200.
- Y. Yang, Z. Liu, H. Zhu, X. Guan, and K. Y. Chan, Energy minimization by dynamic base station switching in heterogeneous cellular network, Wireless Netw. 2022 (2022), 1-16. https://doi.org/10.1186/s13638-021-02080-5
- R. Li, Z. Zhao, X. Chen, J. Palicot, and H. Zhang, Tact: a transfer actor-critic learning framework for energy saving in cellular radio access networks, IEEE Trans. Wireless Commun. 13 (2014), no. 4, 2000-2011. https://doi.org/10.1109/TWC.2014.022014.130840
- R. S. Sutton and A. G. Barto, Reinforcement learning: an introduction, MIT press, 2018.
- A. El-Amine, H. A. Haj Hassan, M. Iturralde, and L. Nuaymi, Location-aware sleep strategy for energy-delay tradeoffs in 5G with reinforcement learning, (IEEE 30th Annual International Symposium on Personal, Indoor and Mobile Radio Communications, Istanbul, Turkey), 2019, pp. 1-6.
- A. El-Amine, M. Iturralde, H. A. Haj Hassan, and L. Nuaymi, A distributed q-learning approach for adaptive sleep modes in 5G networks, (IEEE Wireless Communications and Networking Conference, Marrakesh, Morocco), 2019, pp. 1-6.
- A. El Amine, J.-P. Chaiban, H. A. H. Hassan, P. Dini, L. Nuaymi, and R. Achkar, Energy optimization with multisleeping control in 5g heterogeneous networks using reinforcement learning, IEEE Trans. Netw. Service Manag. 2022 (2022), 1-1.
- M. Masoudi, M. G. Khafagy, E. Soroush, D. Giacomelli, S. Morosi, and C. Cavdar, Reinforcement learning for traffic-adaptive sleep mode management in 5G networks, (IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications, London, UK), 2020, pp. 1-6.
- Y. Li, Deep reinforcement learning: an overview, arXiv preprint, 2017, DOI: 10.48550/arXiv.1701.07274. arXiv preprint arXiv: 1701.07274.
- V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, and G. Ostrovski, Human-level control through deep reinforcement learning, Nature 518 (2015), no. 7540, 529-533. https://doi.org/10.1038/nature14236
- J. Ye and Y.-J. A. Zhang, Drag: deep reinforcement learning based base station activation in heterogeneous networks, IEEE Trans. Mob. Comput. 19 (2019), no. 9, 2076-2087.
- H. Ju, S. Kim, Y. Kim, and B. Shim, Energy-efficient ultra-dense network with deep reinforcement learning, IEEE Trans. Wireless Commun. 21 (2022), no. 8, 6539-6552. https://doi.org/10.1109/TWC.2022.3150425
- Y. Zhu and S. Wang, Joint traffic prediction and base station sleeping for energy saving in cellular networks, (ICC 2021-IEEE International Conference on Communications, Montreal, Canada), 2021, pp. 1-6.
- G. Jang, N. Kim, T. Ha, C. Lee, and S. Cho, Base station switching and sleep mode optimization with lstm-based user prediction, IEEE Access 8 (2020), 222711-222723. https://doi.org/10.1109/ACCESS.2020.3044242
- Q. Wu, X. Chen, Z. Zhou, L. Chen, and J. Zhang, Deep reinforcement learning with spatio-temporal traffic forecasting for data-driven base station sleep control, IEEE/ACM Trans. Netw. 29 (2021), no. 2, 935-948. https://doi.org/10.1109/TNET.2021.3053771
- S. Kumari and B. Singh, Data-driven handover optimization in small cell networks, Wireless Netw. 25 (2019), no. 8, 5001-5009. https://doi.org/10.1007/s11276-019-02111-6
- K. Tan, D. Bremner, J. Le Kernec, Y. Sambo, L. Zhang, and M. A. Imran, Intelligent handover algorithm for vehicleto-network communications with double-deep q-learning, IEEE Trans. Veh. Technol. 71 (2022), no. 7, 7848-7862. https://doi.org/10.1109/TVT.2022.3169804
- K. Qi, T. Liu, and C. Yang, Federated learning based proactive handover in millimeter-wave vehicular networks, (15th IEEE International Conference on Signal Processing (ICSP), Beijing, China), 2020, pp. 401-406.
- J. Feng, C. Rong, F. Sun, D. Guo, and Y. Li, PMF: A privacy-preserving human mobility prediction framework via federated learning, Proc. ACM on Interact., Mobile, Wear. Ubiquitous Technol. 4 (2020), no. 1, 1-21.
- C. Koetsier, J. Fiosina, J. N. Gremmel, J. P. Muller, D. M. Woisetschlager, and M. Sester, Detection of anomalous vehicle trajectories using federated learning, ISPRS Open J. Photogr. Remote Sens. 4 (2022), 100013.
- K.-C. Chang, K.-C. Chu, H.-C. Wang, Y.-C. Lin, and J.-S. Pan, Energy saving technology of 5G base station based on internet of things collaborative control, IEEE Access 8 (2020), 32935-32946. https://doi.org/10.1109/ACCESS.2020.2973648
- B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Y. Arcas, Communication-efficient learning of deep networks from decentralized data, (Artificial Intelligence and Statistics. PMLR), 2017, pp. 1273-1282.
- P. Geibel, Reinforcement learning for MDPS with constraints, (European Conference on Machine Learning, Berlin, Germany), 2006, pp. 646-653.
- H. Van Hasselt, A. Guez, and D. Silver, Deep reinforcement learning with double Q-learning, (Proceedings of the AAAI Conference on Artificial Intelligence, Phoenix, AZ, USA), 2016.
- 3GPP, Evolved universal terrestrial radio access (E-UTRA): Further advancements for E-UTRA physical layer aspects. 36.814. 3rd Generation Partnership Project (3GPP), 2017. Version 9.2.0.
- 3GPP, Technical specification group radio access network: Small cell enhancements for E-UTRA and EUTRAN- Physical layer aspects. 36.872. 3rd Generation Partnership Project (3GPP), 2013. Version 12.1.0.
- MatthiasGrossglauser Michal Piorkowski Natasa Sarafijanovic Djukic, Crawdad dataset epfl/mobility, 2009. (v. 2009 2024).
- M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. Software available from https://www.tensorflow.org/
- D. J. Beutel, T. Topal, A. Mathur, X. Qiu, T. Parcollet, and N. D. Lane, Flower: A friendly federated learning research framework, arXive preprint, 2020, DOI: 10.48550/arXiv.2007.14390
- S. Ioffe and C. Szegedy, Batch normalization: accelerating deep network training by reducing internal covariate shift, (International Conference on Machine Learning. PMLR, Lille, France), 2015, pp. 448-456.