Communications for Statistical Applications and Methods
/
v.30
no.2
/
pp.215-226
/
2023
Deep learning has made great strides in the field of unstructured data such as text, images, and audio. However, in the case of tabular data analysis, machine learning algorithms such as ensemble methods are still better than deep learning. To keep up with the performance of machine learning algorithms with good predictive power, several deep learning methods for tabular data have been proposed recently. In this paper, we review the latest deep learning models for tabular data and compare the performances of these models using several datasets. In addition, we also compare the latest boosting methods to these deep learning methods and suggest the guidelines to the users, who analyze tabular datasets. In regression, machine learning methods are better than deep learning methods. But for the classification problems, deep learning methods perform better than the machine learning methods in some cases.
Communications for Statistical Applications and Methods
/
v.28
no.4
/
pp.329-338
/
2021
Deep learning methods have been developed, used in various fields, and they have shown outstanding performances in many cases. Many studies predicted a daily stock return, a classic example of time-series data, using deep learning methods. We also tried to apply deep learning methods to Korea's stock market data. We used Korea's stock market index (KOSPI) and several individual stocks to forecast daily returns and directions. We compared several deep learning models with other machine learning methods, including random forest and XGBoost. In regression, long short term memory (LSTM) and gated recurrent unit (GRU) models are better than other prediction models. For the classification applications, there is no clear winner. However, even the best deep learning models cannot predict significantly better than the simple base model. We believe that it is challenging to predict daily stock return data even if we use the latest deep learning methods.
Journal of Korean Academy of Nursing Administration
/
v.12
no.1
/
pp.140-150
/
2006
Purpose: The purpose of this study was to determine learning styles and preferred learning methods of clinical nurses. Method: Data were collected from 735 nurses at one university hospital in Seoul. Learning style inventory, a self-report questionnaire was completed by the subjects. Result: Learning styles of nurses were accommodator 35.9%, diverger 30.4%, converger 18.2%, assimilator 15.5%. Learning styles varied significantly with clinical practice area and academic background. Furthermore, RO(reflective observation) learning mode varied significantly according to the clinical practice area. AC(abstractive conceptualization) learning mode varied significantly with job position. AC and AE(active experimentation) learning modes varied significantly according to the academic background and preferred learning method. Preferred learning methods were lecture 24.8%, clinical practice 23.1%, self-directed learning 21.5%, audiovisual education 16.7%, and group discussion 13.9%. Preferred learning methods varied significantly with learning styles and career. Lecture was preferred in diverger and self-directed learning was preferred in assimilator. Clinical practice was preferred in accommodator and converger. Conclusions: This study suggested that clinical education should be applied to nurses after examining learning styles and preferred learning methods. In conclusion, to identify the nurses' learning styles could be helpful for developing the effective educational skill.
The Journal of Korean Academic Society of Nursing Education
/
v.13
no.1
/
pp.13-22
/
2007
Purpose: The purpose of this study was to determine learning styles and preferred learning methods of undergraduate nursing students in Korea. Method: Data was collected from 724 nursing students at five universities in Seoul, Busan, Daegu, Daejeon, and Gwangju. Kolb's Learning Style Inventory, a self-report questionnaire was completed. Result: Learning styles of nursing students were diverger 43.5%, accommodator 36.7%, assimilator 10.8%, or converger 9.0% Learning styles were significantly different related to preferred future clinical practice area and grade. Furthermore, active experimentation(AE) learning mode was significantly different by grade. Concrete experience(CE), conceptualization(AC), and active experimentation(AE) learning modes were significantly different preferred future clinical practice area. preferred learning methods were lecture 40.7%, clinical practice 37.2%, self-directed learning 8.7%, laboratory practice 8.0%, and group discussion 5.4%. Preferred learning methods were significantly different by learning styles and grade. Lecture was preferred in diverger and assimilator. Clinical practice was preferred in accommodator and converger. Styles Conclusion: This study suggested that nursing education should be applied to nursing students after examining learning styles and preferred learning methods. In conclusion, nursing educators should help to develop various learning modes for student's balanced learning capabilities.
Multi-view learning considers data from various viewpoints as well as attempts to integrate various information from data. Multi-view learning has been studied recently and has showed superior performance to a model learned from only a single view. With the introduction of deep learning techniques to a multi-view learning approach, it has showed good results in various fields such as image, text, voice, and video. In this study, we introduce how multi-view learning methods solve various problems faced in human behavior recognition, medical areas, information retrieval and facial expression recognition. In addition, we review data integration principles of multi-view learning methods by classifying traditional multi-view learning methods into data integration, classifiers integration, and representation integration. Finally, we examine how CNN, RNN, RBM, Autoencoder, and GAN, which are commonly used among various deep learning methods, are applied to multi-view learning algorithms. We categorize CNN and RNN-based learning methods as supervised learning, and RBM, Autoencoder, and GAN-based learning methods as unsupervised learning.
Purpose: This study aimed to introduce active learning methods, including flipped, case-based, and team-based learning in an electrocardiography (ECG) course and to investigate outcomes and satisfaction with these methods. Methods: To identify the learning effect of active learning, pre-and post-academic self-efficacy was compared between the experimental and control groups. In the experimental group, pre-and post-knowledge and clinical performance regarding ECG were also assessed. In addition, class satisfaction was investigated after application of active learning methods in the experimental group. Data were collected from 84 paramedic students and analyzed using SPSS 22.0 (IBM, Armonk, NY, USA). Results: The experimental group showed significant improvement in post-academic self-efficacy and knowledge. The experimental group also showed high clinical performance (9.83 out of 10 in ECG checking ability and 9.63 out of 10 in ECG reading ability). The mean satisfaction score was 4.23 out of 5 (responses based on a Likert scale) in the experimental group. Conclusion: Active learning in an ECG course was found to be highly effective and satisfactory. Furthermore, paramedic students can enhance their accountability and judgement with team-based learning through free engagement in discussion.
In this study, specific teaching methods of lecturing and improved discussion methods (combining discussion and problem-based learning) were selected and applied for each major subject and learning content area in the fields of engineering, language, and social sciences. Then, the selected teaching methods were examined to determine the most effective learning contents. Finally, in order to determine the most effective teaching methods, a survey on student satisfaction was analyzed statistically. The results showed that students preferred teaching methods that combine lectures and improved discussion methods to the traditional method of only lectures. Therefore, this research proposes the combined teaching method for each major subject and learning content area.
Objectives: The aim of this study is to investigate extracurricular program needs according to the learning styles of dental hygiene students, and to develop and organize non-subject programs that strengthen student competencies. Methods: The subjects in this study were dental hygiene students from three colleges located in Chungbuk, Chungnam, and Ulsan, respectively. The survey tools were composed of learning style, a non-subject field, and non-subject teaching and learning methods. Lastly, 313 data points were analyzed. Results: Learning styles of subjects were as follows: assimilators, divergers, convergers, and accommodators, at 44.6%, 33.0%, 16.0%, and 6.4%, respectively. Preference of the non-subject field, according to learning style, showed that accommodators were higher than divergers on startup, and the difference was found to be statistically significant (p<0.05). Preference of non-subject teaching and learning methods, according to learning style, shows that both divergers and convergers prefer special lectures, while assimilators prefer tours, and convergers prefer experience/exercise. The results had achieved statistical significance (p<0.05). Conclusions: This study shows that dental hygiene students had different learning styles, and their learning methods varied depending on learning style. Therefore, a method should be identified to develop and run non-subject programs suitable for each learning style.
Purpose - Recently, in the field of language education, interest in edutech has increased due to difficulties in classroom teaching due to COVID-19. Accordingly, we would like to analyze research topics related to e-learning before and after COVID-19 and examine the implications for the future Korean language education field. Research design, data, and methodology - This study organized a list of papers to be analyzed by searching for e-learning terms applicable to Korean language education in RISS. The collected data was electronically documented, keywords were extracted using text mining techniques, and word frequencies were checked, and then viewed through cloud visualization. Result - It was confirmed that research on e-learning in the field of Korean language education has increased rapidly in 2021 and 2022. In particular, extensive research on online learning methods has been actively conducted due to the difficulties of face-to-face learning in the COVID-19 era. There have been many studies on teaching and learning methods, such as flipped learning, hybrid learning, blended learning, mobile learning, and smart learning. Conclusion - Since the research so far has mainly focused on online class management methods. Therefore, future research suggests that efforts should be made to develop educational contents and teaching methods using specific ICT technologies. These efforts will contribute to advancing smart education that future education aims for.
Many universities are searching for educational methods to cultivate problem-solving ability and cooperative learning ability or already trying to implement them. Problem Based Learning(PBL) and Action Learning(AL) are effective teaching and learning methods to cultivate men of talent qualified for problem-solving and cooperative learning abilities that universities are seeking after. PBL and AL have something in common in that learning is accomplished while learners are solving the authentic problem. But, in spite of this similarity, PBL and AL have differences. However, most literatures and cases on these two models introduce only the outline of commons and differences and do not provide teachers with actual helping aids to select a model appropriate for the actual design or operation of classes. Accordingly, many teachers usually select and utilize a familiar model rather than select a proper model to the nature of a subject and the educational goal. Teaching and learning methods or learning environment should be selected appropriately to the educational goal. This study indicates the characteristics of PBL and AL that are being introduced and utilized as a principal teaching and learning method of college education and then shows how this method can be realized in the university by comparing the cases of classes applied in two methods.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.