• Title/Summary/Keyword: learning concepts

Search Result 1,217, Processing Time 0.024 seconds

The Type of Fractional Quotient and Consequential Development of Children's Quotient Subconcept of Rational Numbers (분수 몫의 형태에 따른 아동들의 분수꼴 몫 개념의 발달)

  • Kim, Ah-Young
    • Journal of Educational Research in Mathematics
    • /
    • v.22 no.1
    • /
    • pp.53-68
    • /
    • 2012
  • This paper investigated the conceptual schemes four children constructed as they related division number sentences to various types of fraction: Proper fractions, improper fractions, and mixed numbers in both contextual and abstract symbolic forms. Methods followed those of the constructivist teaching experiment. Four fifth-grade students from an inner city school in the southwest United States were interviewed eight times: Pre-test clinical interview, six teaching / semi-structured interviews, and a final post-test clinical interview. Results showed that for equal sharing situations, children conceptualized division in two ways: For mixed numbers, division generated a whole number portion of quotient and a fractional portion of quotient. This provided the conceptual basis to see improper fractions as quotients. For proper fractions, they tended to see the quotient as an instance of the multiplicative structure: $a{\times}b=c$ ; $a{\div}c=\frac{1}{b}$ ; $b{\div}c=\frac{1}{a}$. Results suggest that first, facility in recall of multiplication and division fact families and understanding the multiplicative structure must be emphasized before learning fraction division. Second, to facilitate understanding of the multiplicative structure children must be fluent in representing division in the form of number sentences for equal sharing word problems. If not, their reliance on long division hampers their use of syntax and their understanding of divisor and dividend and their relation to the concepts of numerator and denominator.

  • PDF

Pre-service Teachers' Opinions and Needs on the Physics Education Major Curriculum in College (사범대학 물리교육과의 전공 교육과정에 관한 예비 교사의 의견과 요구)

  • Jo, Kwang-hee
    • Journal of Science Education
    • /
    • v.37 no.2
    • /
    • pp.374-388
    • /
    • 2013
  • The purpose of this study was to investigate pre-service physics teachers' perceptions on the physics education major curriculum. We surveyed 15 junior, and 13 senior college students of physics education major in an university in southern part of Korea. Among them, 24 participants(86 %) took the physics 1 course in high school and 22 participants(79 %) chose the physics 1 in their Korea Scholastic Aptitude Test. The responses showed that the most necessary part in pre-service students' learning was the understanding of high school level physics(36 %), and the understanding of introductory level physics(29 %). In the wish list of courses to be open, high school level physics course was ranked first among seven options by 61 % of respondents. Also, there was some concurrence among respondents in opinion of the necessity for understanding introductory physics. Students felt difficulties in understanding it especially owing to the lack of problem solving skill and comprehension. They added that the sufficient explanation of core concepts should be the first action in the innovative plan. Most participants of pre-service physics teachers hoped to have the revised major curriculum which could help their understanding of high school level or introductory level of physics. However, there was a gap of opinions between the group of students with completion of the high school physics 1 & 2 course and those with non-completion of them. The approach of changing major curriculum with consideration of learners' needs was recommended because the number of students with completion of the high school physics course would probably be decreasing rapidly under these circumstances such as the application of new national curriculum, the reduction of the number of the elective courses in Korea Scholastic Aptitude Test and so on.

  • PDF

Middle school students' interpretation, construction, and application of visual representations for magnetic field due to a current (전류에 의한 자기장에 대한 중학생의 시각적 표상 해석, 구성, 적용 능력)

  • Jo, Kwanghee;Jho, Hunkoog;Yoon, Hye-Gyoung
    • Journal of Science Education
    • /
    • v.41 no.1
    • /
    • pp.152-165
    • /
    • 2017
  • The magnetic field due to a current is one of the core concepts in electromagnetism which has been taught in secondary science education. In addition, it is a representative example of using visual representations to explain the relation between invisible physical quantities; current and magnetic field. In this study we investigated middle school students' representational competence into three components; interpretation, construction, and application of visual representations. According to the analysis, more than 75 % of the respondents interpreted the meaning of the arrows for current and magnetic field correctly. However, half of them confused the movement of electric charges with the direction of magnetic field. Over 60 % of the students constructed the magnetic field representation as circular closed curves, but many of them could not express the density of field lines properly. In application of visual representations, more than half failed to draw the direction of compass needle correctly. The scores were in order of interpretation, construction and application. There were also significant correlations among three components of representational competence. More attention and research on students' representational competence and effective use of visual representations is needed to better support science learning and teaching.

A Study on Elementary School Students' Understanding of Fractions (초등학생의 분수이해에 관한 연구)

  • 권성룡
    • School Mathematics
    • /
    • v.5 no.2
    • /
    • pp.259-273
    • /
    • 2003
  • A fraction is one of the most important concepts that students have to learn in elementary school. But it is a challenge for students to understand fraction concept because of its conceptual complexity. The focus of fraction learning is understanding the concept. Then the problem is how we can facilitate the conceptual understanding and estimate it. In this study, Moore's concept understanding scheme(concept definition, concept image, concept usage) was adopted as an theoretical framework to investigate students' fraction understanding. The questions of this study were a) what concept image do students have\ulcorner b) How well do students solve fraction problems\ulcorner c) How do students use fraction concept to generate fraction word problem\ulcorner By analyzing the data gathered from three elementary school, several conclusion was drawn. 1) The students' concept image of fraction is restricted to part-whole sub-construct. So is students' fraction understanding. 2) Students can solve part-whole fraction problems well but others less. This also imply that students' fraction understanding is partial. 3) Half of the subject(N=98) cannot pose problems that involve fraction and fraction operation. And some succeeded applied the concept mistakenly. To understand fraction, various fraction subconstructs have to be integrated as whole one. To facilitate this integration, fraction program should focus on unit, partitioning and quantity. This may be achieved by following activities: * Building on informal knowledge of fraction * Focusing on meaning other than symbol * Various partitioning activities * Facing various representation * Emphasizing quantitative aspects of fraction * Understanding the meanings of fraction operation Through these activities, teacher must help students construct various faction concept image and apply it to meaningful situation. Especially, to help students to construct various concept image and to use fraction meaningfully to pose problems, much time should be spent to problem posing using fraction.

  • PDF

An Evaluation on the Effectiveness of Public Health Education by the SNU Graduates Currently Working at Health-related Jobs (보건분야 종사 졸업생에 의한 서울대학교 보건대학원 교육효과 평가)

  • 이상이;문옥륜
    • Korean Journal of Health Education and Promotion
    • /
    • v.14 no.2
    • /
    • pp.43-57
    • /
    • 1997
  • Educational goals of SPH were two-fold : One was to train a health professions who should take charge of a leading roles, another were to educate the researchers of public health. There were strong demands to evaluate whether these goals had been effectively achieved through the master's course of SPH or not. According to the educational goals of SPH, public health is an applied science to be applicable to health-related fields. The curriculum of SPH has to be built under this principle and be evaluated by someone regularly. Who evaluates that? The most pertinent appraiser is the graduates of public health currently working at health-related jobs. It was the purpose of the study to let the graduates evaluate their education and the curriculum that they had undertaken during master's course at SNU. If the results of the evaluation by the graduates were not satisfactory, we should find the actual causes of low scored apraisal and reform the curriculum of SPH as the process of problem solving. During September and October 1996, a postal survey was undertaken of the 293 SNU graduates of public health who had been engaged in the health related jobs. As 198 graduates answered out of 293, the response rate was 67.6%. The questionnaire was designed to ascertain how well the SNU master's course of public health had helped their practice. The SAS package was used for statistical analysis and $x^2$-test as a test of statistical significance. Major findings of the study were summarized as follows: $\cdot$ The health related abilities consisted of three categories, which were health administration abilities composed of 14 items, health education abilities composed of 5 items, health research abilities composed of 10 items. $\cdot$ The respondents had acquired 'Worldwide trends of health policy', 'evaluation concepts of health projects', 'interpersonal relationships in professional life', and 'communication through writings' moe than other detailed items in the category of health administration abilities. $\cdot$ 'Establishment of educational and learning golas' was the most acquired item of 5 detailed items of health education abilities. $\cdot$ Respondents indicated that they had acquired ability 'to search reference', ' to understand health problems', 'to establish study plannings', and 'to collect health related data' more than other detailed items in the category of health research abilities.

  • PDF

Applied geography:retrospect and prospects (응용지리학 일반의 회고와 전망)

  • ;Lee, Hee-Yeon
    • Journal of the Korean Geographical Society
    • /
    • v.31 no.2
    • /
    • pp.329-345
    • /
    • 1996
  • The purposes of this study are to review research trends of applied geography field, to retrospect geographical works done by Korean geographers in applied geography, and to prospect the future of applied geography. We are in the period where societal problems such as energy, transportation, pollution, environment, health care, and many others, require careful consideration and need throughout strategies for solution. Most societal problems have some geographical dimensions. Because these problems are geographic in nature, there is an obvious implication that geography as a discipline has something to offer in their solutions. In fact, most geographic problems are best presented and analyzed through the applications of geographic theories, concepts and tools. Applied geography is a branch of general geography. It relies on the scientific methods and uses the principles and methods of pure geography. However applied geography is different in that it analyzes and evaluates real world action and planning and seeks to implement and manipulate environmental and spatial realities. Thus, geographic theories and other social theories that have geographic dimensions are fundamental to applied geography. Applied geography has a short history as theme in Korean geography. During the last two decades. Korea achieved remarkable economic growth. We have also encountered widening regional disparity, housing shortage of larger cities, transportation congestion, environmental pollution and many other problems. Applied geographers have tried to analyze and solve such spatial problems during the last 30 years. The research trend of Korean applied geography can be subdivided into 5 categories: (1) land use analysis and efficient utilization, (2) national physical development and planning. (3) regional development and regional planning, (4) tourism and location-allocation, transportation planning. Still the overconcentration of Seoul metropolitan region and unbalanced regional development are perceived to be the serious spatial problems which may induce more works to solve these problems. In Korea new emphasis has to be given to some professional training and experimental learning, including methodology, field techniques data management, statistical analysis, cartography, GIS, and other tools, as applicable and beneficial to problem solving in real world. The growth of applied geography depends on new insights and purposed solutions of future applied geographers in Korea. Applied geographers will contribute to the creation of future Korean geographies.

  • PDF

School Administrators' Perspectives of Effective Mathematics Instruction and Comparison to Teachers' Perspectives (좋은 수학 수업에 대한 학교 관리자의 인식 조사 및 초등 교사와의 인식 비교)

  • Kwon, MiSun;Pang, JeongSuk
    • Education of Primary School Mathematics
    • /
    • v.19 no.4
    • /
    • pp.329-347
    • /
    • 2016
  • This paper investigated the views of effective mathematics instruction on the part of school administrators, and then compared and contrasted such views with those of elementary school teachers based on the previous study. A total of 32 school administrators participated in this study and responded to three types of the questionnaire. The results of this study showed that school administrators regarded good mathematics teaching as using concrete materials and teaching students to think. School administrators put their first priority on curriculum and content among four main domains of good mathematics teaching, and did on constructing curriculum among seven sub-domains of good mathematics teaching. They agreed that good mathematics teaching includes teaching by reconstructing the curriculum according to students' various levels and teaching to emphasize the connection among mathematical concepts. However, they thought that good mathematics teaching might not include teaching for fluent calculation or teaching in well-equipped learning environment. The results of comparison of perspectives regarding good mathematics teaching between school administrators and teachers showed remarkably similar tendency. However, a noticeable difference was that school administrators agreed more than elementary school teachers with regard to the 20 elements related to effective mathematics instruction. This paper closes with implications based on the similarities and differences regarding effective mathematics instruction perceived by school administrators and teachers.

Characteristics of Algebraic Thinking and its Errors by Mathematically Gifted Students (수학영재의 대수적 사고의 특징과 오류 유형)

  • Kim, Kyung Eun;Seo, Hae Ae;Kim, Dong Hwa
    • Journal of Gifted/Talented Education
    • /
    • v.26 no.1
    • /
    • pp.211-230
    • /
    • 2016
  • The study aimed to investigate the characteristics of algebraic thinking of the mathematically gifted students and search for how to teach algebraic thinking. Research subjects in this study included 93 students who applied for a science gifted education center affiliated with a university in 2015 and previously experienced gifted education. Students' responses on an algebraic item of a creative thinking test in mathematics, which was given as screening process for admission were collected as data. A framework of algebraic thinking factors were extracted from literature review and utilized for data analysis. It was found that students showed difficulty in quantitative reasoning between two quantities and tendency to find solutions regarding equations as problem solving tools. In this process, students tended to concentrate variables on unknown place holders and to had difficulty understanding various meanings of variables. Some of students generated errors about algebraic concepts. In conclusions, it is recommended that functional thinking including such as generalizing and reasoning the relation among changing quantities is extended, procedural as well as structural aspects of algebraic expressions are emphasized, various situations to learn variables are given, and activities constructing variables on their own are strengthened for improving gifted students' learning and teaching algebra.

The Development and Validation of Instructional Strategies Using the Advanced Laboratory Equipment(ALE) in Science High School Chemistry Classrooms: A Focus of UV-Visible and IR Spectrophotometer (과학고등학교 화학수업에서 첨단과학 실험기기 활용 수업 전략의 개발 및 타당화: 자외선-가시광선 및 적외선 분광기를 중심으로)

  • Jeon, Kyunghee;Park, Dahye;Jang, Nakhan;Park, Jongwook;Park, Jongseok
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.1
    • /
    • pp.69-81
    • /
    • 2016
  • The purpose of this study was to find out the validation of instructional strategies using the Advanced Laboratory Equipment (ALE class) by investigating science high school students’ perception on ALE in chemistry classrooms and to consider the need for development of teaching materials on ALE class. 7 sessions of ALE including experiments with innovative equipment were developed and applied to 21 students in D Science High School. At the end of the sessions, questionnaire was given to the students. We also collected qualitative data by interviewing 9 students who participated in the questionnaire. We analyzed the data collected by In-depth interviews and students’ experimental reports. The result showed that ALE class was effective to enhance students’ understanding of learning concepts because the experimental time was shortened in real time data processing. Some students showed creative performance on solving scientific problems by using everyday materials in experimental process and developed perceptions of practical inquiry. Through this process, students’ positive attitudes and interests in science and heuristic inquiry skills were also enhanced. Developing ALE lesson materials will be helpful for students to understand science and technology and the domain of science in broader contexts.

An Analysis of High School Students' Systems Thinking and Understanding of the Earth Systems through their Science Writing (과학 글쓰기를 통한 고등학생의 지구 시스템에 대한 이해와 시스템 사고의 분석)

  • Lee, Hyundong;Kim, Taesu;Lee, Hyonyong
    • Journal of the Korean earth science society
    • /
    • v.38 no.1
    • /
    • pp.91-104
    • /
    • 2017
  • The purposes of this study were to analyze high school students' understanding about the Earth system and systems thinking process, and to develop science writing programs designed to assess students' understanding about themes of Earth Science such as global warming, volcanoes, and desertification. A total of 8 $11^{th}$ grade students from general high schools participated in the writing program and draw the causal maps. The methods of this study are as follows. First, DAET-C was used to investigate the way of students' understanding about the Earth systems. What the students' best understood was the component of the Earth systems followed by the interaction of the Earth systems and the scientific literacy of Earth science. Second, feedback circulations on the causal maps were found in four students in global warming section, one student in volcanic eruption section, and four students in desertification section, which means that systems thinking was not largely employed by the students. Consequently, the student participants understood that the global change was happening in correlation with complex concepts and factors, but they were short of using systems thinking in their science study. Therefore, the result of this study suggests that more studies be conducted to develop systems thinking in Earth Science learning through science writing programs.