• Title/Summary/Keyword: learning algorithms

Search Result 2,317, Processing Time 0.027 seconds

An Optimal Cluster Analysis Method with Fuzzy Performance Measures (퍼지 성능 측정자를 결합한 최적 클러스터 분석방법)

  • 이현숙;오경환
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.6 no.3
    • /
    • pp.81-88
    • /
    • 1996
  • Cluster analysis is based on partitioning a collection of data points into a number of clusters, where the data points in side a cluster have a certain degree of similarity and it is a fundamental process of data analysis. So, it has been playing an important role in solving many problems in pattern recognition and image processing. For these many clustering algorithms depending on distance criteria have been developed and fuzzy set theory has been introduced to reflect the description of real data, where boundaries might be fuzzy. If fuzzy cluster analysis is tomake a significant contribution to engineering applications, much more attention must be paid to fundamental questions of cluster validity problem which is how well it has identified the structure that is present in the data. Several validity functionals such as partition coefficient, claasification entropy and proportion exponent, have been used for measuring validity mathematically. But the issue of cluster validity involves complex aspects, it is difficult to measure it with one measuring function as the conventional study. In this paper, we propose four performance indices and the way to measure the quality of clustering formed by given learning strategy.

  • PDF

Leakage detection and management in water distribution systems

  • Sangroula, Uchit;Gnawali, Kapil;Koo, KangMin;Han, KukHeon;Yum, KyungTaek
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.160-160
    • /
    • 2019
  • Water is a limited source that needs to be properly managed and distributed to the ever-growing population of the world. Rapid urbanization and development have increased the overall water demand of the world drastically. However, there is loss of billions of liters of water every year due to leakages in water distribution systems. Such water loss means significant financial loss for the utilities as well. World bank estimates a loss of $14 billion annually from wasted water. To address these issues and for the development of efficient and reliable leakage management techniques, high efforts have been made by the researchers and engineers. Over the past decade, various techniques and technologies have been developed for leakage management and leak detection. These include ideas such as pressure management in water distribution networks, use of Advanced Metering Infrastructure, use of machine learning algorithms, etc. For leakage detection, techniques such as acoustic technique, and in recent yeats transient test-based techniques have become popular. Smart Water Grid uses two-way real time network monitoring by utilizing sensors and devices in the water distribution system. Hence, valuable real time data of the water distribution network can be collected. Best results and outcomes may be produced by proper utilization of the collected data in unison with advanced detection and management techniques. Long term reduction in Non Revenue Water can be achieved by detecting, localizing and repairing leakages as quickly and as efficiently as possible. However, there are still numerous challenges to be met and future research works to be conducted in this field.

  • PDF

Development and Application of Unplugged Activity-centered Robot for Improving Creative Problem Solving Ability (창의적 문제해결력 신장을 위한 언플러그드 활동 중심 로봇 개발 및 적용)

  • Hong, Jiyeon;Kim, Yungsik
    • Journal of The Korean Association of Information Education
    • /
    • v.23 no.5
    • /
    • pp.441-449
    • /
    • 2019
  • With the introduction of the 2015 revised curriculum, software education became mandatory in elementary school. The practical subject in the content for the software education consists of information ethics, algorithms, programming, and computer science. Especially, elementary school encourages the unplugged activities. Unplugged activities are preferred among the teachers in the education field as a teaching-learning method. However, those teachers pointed out that the lack of suitable unplugged activity materials was the biggest challenge. In addition, it was pointed out that the existing materials were not suitable for achievement standards, and there are many simple playing-oriented educations that are not linked to computing activities. In this study, we developed an unplugged activity-oriented robot that can be used for the elementary students to learn the basic control structure suggested in the achievement criteria SW education and to develop creative problem solving ability through various activities using sensors. The effectiveness was verified through the software class using the developed robot in this study.

English Conversation System Using Artificial Intelligent of based on Virtual Reality (가상현실 기반의 인공지능 영어회화 시스템)

  • Cheon, EunYoung
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.11
    • /
    • pp.55-61
    • /
    • 2019
  • In order to realize foreign language education, various existing educational media have been provided, but there are disadvantages in that the cost of the parish and the media program is high and the real-time responsiveness is poor. In this paper, we propose an artificial intelligence English conversation system based on VR and speech recognition. We used Google CardBoard VR and Google Speech API to build the system and developed artificial intelligence algorithms for providing virtual reality environment and talking. In the proposed speech recognition server system, the sentences spoken by the user can be divided into word units and compared with the data words stored in the database to provide the highest probability. Users can communicate with and respond to people in virtual reality. The function provided by the conversation is independent of the contextual conversations and themes, and the conversations with the AI assistant are implemented in real time so that the user system can be checked in real time. It is expected to contribute to the expansion of virtual education contents service related to the Fourth Industrial Revolution through the system combining the virtual reality and the voice recognition function proposed in this paper.

The Effects of Coding Education Using the Unplugged Robot Education System on the Perceived Useful and Easy

  • Song, JeongBeom
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.8
    • /
    • pp.121-128
    • /
    • 2015
  • This study aimed to investigate the effects of an unplugged robot education system capable of computerless coding education. Specifically, this study compared this education system with PicoCricket, an educational robot that can also be used with elementary students in lower grades, using assessment tools on perceived usefulness and ease. Using random sampling and randomized assignment for more objective validation, 30 participants were assigned to the unplugged robot education system group (experimental group) and 30 participants were assigned to the PicoCricket group (control group), for a total of 60 study participants. The research procedure included verification of the equivalence of the two groups by conducting a pretest after a 2-hour basic training session on algorithms and programming. The experimental and control groups learned the same content using different educational tools in accordance with software training guidelines for a total of 12 hours. Then, the difference in perceived usefulness and ease between the two groups was examined using a post-treatment test. The study results showed that scores on both dependent variables, perceived usefulness and perceived ease, were significantly higher in the experimental group than the control group. Moreover, scores on all sub-variables of the dependent variables were significantly higher in the experimental group than the control group. These results suggest that learners using the unplugged robot education system found it more useful and easier to use than learners using the existing educational robot, PicoCricket. This study's findings are significant, as according to the technology acceptance model, the perceived usefulness and ease of an educational tool are important variables that determine the acceptance of the tool (i.e., persistence of learning).

Alzheimer's Disease Classification with Automated MRI Biomarker Detection Using Faster R-CNN for Alzheimer's Disease Diagnosis (치매 진단을 위한 Faster R-CNN 활용 MRI 바이오마커 자동 검출 연동 분류 기술 개발)

  • Son, Joo Hyung;Kim, Kyeong Tae;Choi, Jae Young
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.10
    • /
    • pp.1168-1177
    • /
    • 2019
  • In order to diagnose and prevent Alzheimer's Disease (AD), it is becoming increasingly important to develop a CAD(Computer-aided Diagnosis) system for AD diagnosis, which provides effective treatment for patients by analyzing 3D MRI images. It is essential to apply powerful deep learning algorithms in order to automatically classify stages of Alzheimer's Disease and to develop a Alzheimer's Disease support diagnosis system that has the function of detecting hippocampus and CSF(Cerebrospinal fluid) which are important biomarkers in diagnosis of Alzheimer's Disease. In this paper, for AD diagnosis, we classify a given MRI data into three categories of AD, mild cognitive impairment, and normal control according by applying 3D brain MRI image to the Faster R-CNN model and detect hippocampus and CSF in MRI image. To do this, we use the 2D MRI slice images extracted from the 3D MRI data of the Faster R-CNN, and perform the widely used majority voting algorithm on the resulting bounding box labels for classification. To verify the proposed method, we used the public ADNI data set, which is the standard brain MRI database. Experimental results show that the proposed method achieves impressive classification performance compared with other state-of-the-art methods.

Smart Farm Control System for Improving Energy Efficiency (에너지 효율 향상을 위한 스마트팜 제어 시스템)

  • Choi, Minseok
    • Journal of Digital Convergence
    • /
    • v.19 no.12
    • /
    • pp.331-337
    • /
    • 2021
  • The adaptation of smartfarm technology that converges ICT is increasing productivity and competitiveness in the agriculture. Technologies have been developed that enable environmental monitoring through various sensors and automatic control of the cultivation environment, and researches are underway to advance smartfarm technology using data generated from smartfarms. In this paper, an environmental control method to reduce the energy consumption of a smartfarm by using the environment and control data of the smartfarm is proposed. It was confirmed that energy consumption could be reduced compared to an independent environmental control method by creating an environmental prediction model using accumulated environmental data and selecting a control method to minimize energy consumption in a given situation by considering multiple environmental factors. In the future, research is needed to obtain higher energy efficiency through the advancement of the predictive model and the improvement of the complex control algorithms.

Application of object detection algorithm for psychological analysis of children's drawing (아동 그림 심리분석을 위한 인공지능 기반 객체 탐지 알고리즘 응용)

  • Yim, Jiyeon;Lee, Seong-Oak;Kim, Kyoung-Pyo;Yu, Yonggyun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.26 no.5
    • /
    • pp.1-9
    • /
    • 2021
  • Children's drawings are widely used in the diagnosis of children's psychology as a means of expressing inner feelings. This paper proposes a children's drawings-based object detection algorithm applicable to children's psychology analysis. First, the sketch area from the picture was extracted and the data labeling process was also performed. Then, we trained and evaluated a Faster R-CNN based object detection model using the labeled datasets. Based on the detection results, information about the drawing's area, position, or color histogram is calculated to analyze primitive information about the drawings quickly and easily. The results of this paper show that Artificial Intelligence-based object detection algorithms were helpful in terms of psychological analysis using children's drawings.

Intelligent Prediction System for Diagnosis of Agricultural Photovoltaic Power Generation (영농형 태양광 발전의 진단을 위한 지능형 예측 시스템)

  • Jung, Seol-Ryung;Park, Kyoung-Wook;Lee, Sung-Keun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.5
    • /
    • pp.859-866
    • /
    • 2021
  • Agricultural Photovoltaic power generation is a new model that installs solar power generation facilities on top of farmland. Through this, it is possible to increase farm household income by producing crops and electricity at the same time. Recently, various attempts have been made to utilize agricultural solar power generation. Agricultural photovoltaic power generation has a disadvantage in that maintenance is relatively difficult because it is installed on a relatively high structure unlike conventional photovoltaic power generation. To solve these problems, intelligent and efficient operation and diagnostic functions are required. In this paper, we discuss the design and implementation of a prediction and diagnosis system to collect and store the power output of agricultural solar power generation facilities and implement an intelligent prediction model. The proposed system predicts the amount of power generation based on the amount of solar power generation and environmental sensor data, determines whether there is an abnormality in the facility, calculates the aging degree of the facility and provides it to the user.

Object Size Prediction based on Statistics Adaptive Linear Regression for Object Detection (객체 검출을 위한 통계치 적응적인 선형 회귀 기반 객체 크기 예측)

  • Kwon, Yonghye;Lee, Jongseok;Sim, Donggyu
    • Journal of Broadcast Engineering
    • /
    • v.26 no.2
    • /
    • pp.184-196
    • /
    • 2021
  • This paper proposes statistics adaptive linear regression-based object size prediction method for object detection. YOLOv2 and YOLOv3, which are typical deep learning-based object detection algorithms, designed the last layer of a network using statistics adaptive exponential regression model to predict the size of objects. However, an exponential regression model can propagate a high derivative of a loss function into all parameters in a network because of the property of an exponential function. We propose statistics adaptive linear regression layer to ease the gradient exploding problem of the exponential regression model. The proposed statistics adaptive linear regression model is used in the last layer of the network to predict the size of objects with statistics estimated from training dataset. We newly designed the network based on the YOLOv3tiny and it shows the higher performance compared to YOLOv3 tiny on the UFPR-ALPR dataset.