• Title/Summary/Keyword: leakage power in dynamic circuits

Search Result 9, Processing Time 0.026 seconds

High speed wide fan-in designs using clock controlled dual keeper domino logic circuits

  • Angeline, A. Anita;Bhaaskaran, V.S. Kanchana
    • ETRI Journal
    • /
    • v.41 no.3
    • /
    • pp.383-395
    • /
    • 2019
  • Clock Controlled Dual keeper Domino logic structures (CCDD_1 and CCDD_2) for achieving a high-speed performance with low power consumption and a good noise margin are proposed in this paper. The keeper control circuit comprises an additional PMOS keeper transistor controlled by the clock and foot node voltage. This control mechanism offers abrupt conditional control of the keeper circuit and reduces the contention current, leading to high-speed performance. The keeper transistor arrangement also reduces the loop gain associated with the feedback circuitry. Hence, the circuits offer less delay variability. The design and simulation of various wide fan-in designs using 180 nm CMOS technology validates the proposed CCDD_1 and CCDD_2 designs, offering an increased speed performance of 7.2% and 8.5%, respectively, over a conventional domino logic structure. The noise gain margin analysis proves good robustness of the CCDD structures when compared with a conventional domino logic circuit configuration. A Monte Carlo simulation for 2,000 runs under statistical process variations demonstrates that the proposed CCDD circuits offer a significantly reduced delay variability factor.

Sub-1.2-V 1-Gb Mobile DRAM with Ultra-low Leakage Current (극저 누설전류를 가지는 1.2V 모바일 DRAM)

  • Park, Sang-Kyun;Seo, Dong-Il;Jun, Young-Hyun;Kong, Bai-Sun
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.433-434
    • /
    • 2007
  • This paper describes a low-voltage dynamic random-access memory (DRAM) focusing on subthreshold leakage reduction during self-refresh (sleep) mode. By sharing a power switch, multiple iterative circuits such as row and column decoders have a significantly reduced subthreshold leakage current. To reduce the leakage current of complex logic gates, dual channel length scheme and input vector control method are used. Because all node voltages during the standby mode are deterministic, zigzag super-cutoff CMOS is used, allowing to Preserve internal data. MTCMOS technique Is also used in the circuits having no need to preserve internal data. Sub-1.2-V 1-Gb mobile DDR DRAM employing all these low-power techniques was designed in a 60 nm CMOS technology and achieved over 77% reduction of overall leakage current during the self-refresh mode.

  • PDF

Dynamic Voltage and Frequency Scaling for Power-Constrained Design using Process Voltage and Temperature Sensor Circuits

  • Nan, Haiqing;Kim, Kyung-Ki;Wang, Wei;Choi, Ken
    • Journal of Information Processing Systems
    • /
    • v.7 no.1
    • /
    • pp.93-102
    • /
    • 2011
  • In deeply scaled CMOS technologies, two major non-ideal factors are threatening the survival of the CMOS; i) PVT (process, voltage, and temperature) variations and ii) leakage power consumption. In this paper, we propose a novel post-silicon tuning methodology to scale optimum voltage and frequency "dynamically". The proposed design technique will use our PVT sensor circuits to monitor the variations and based on the monitored variation data, voltage and frequency will be compensated "automatically". During the compensation process, supply voltage is dynamically adjusted to guarantee the minimum total power consumption without violating the frequency requirement. The simulation results show that the proposed technique can reduce the total power by 85% and the static power by 53% on average for the selected ISCAS'85 benchmark circuits with 45 nm CMOS technology compared to the results of the traditional PVT compensation method.

Area-Power Trade-Offs for Flexible Filtering in Green Radios

  • Michael, Navin;Moy, Christophe;Vinod, Achutavarrier Prasad;Palicot, Jacques
    • Journal of Communications and Networks
    • /
    • v.12 no.2
    • /
    • pp.158-167
    • /
    • 2010
  • The energy efficiency of wireless infrastructure and terminals has been drawing renewed attention of late, due to their significant environmental cost. Emerging green communication paradigms such as cognitive radios, are also imposing the additional requirement of flexibility. This dual requirement of energy efficiency and flexibility poses new design challenges for implementing radio functional blocks. This paper focuses on the area vs. power trade-offs for the type of channel filters that are required in the digital frontend of a flexible, energy-efficient radio. In traditional CMOS circuits, increased area was traded for reduced dynamic power consumption. With leakage power emerging as the dominant mode of power consumption in nanoscale CMOS, these trade-offs must be revisited due to the strong correlation between area and leakage power. The current work discusses how the increased timing slacks obtained by increasing the parallelism can be exploited for overall power reduction even in nanoscale circuits. In this context the paper introduces the notion of 'area efficiency' and a metric for evaluating it. The proposed metric has also been used to compare the area efficiencies of different classes of time-shared filters.

Analysis and Degradation of leakage Current in submicron Device (미세소자에서 누설전류의 분석과 열화)

  • 배지철;이용재
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.113-116
    • /
    • 1996
  • The drain current of the MOSFET in the off state(i.e., Id when Vgs=0V) is undesired but nevertheless important leakage current device parameter in many digital CMOS IC applications (including DRAMs, SRAMs, dynamic logic circuits, and portable systems). The standby power consumed by devices in the off state have added to the total power consumed by the IC, increasing heat dissipation problems in the chip. In this paper, hot-carrier-induced degra- dation and gate-induced-drain-leakage curr- ent under worse case in P-MOSFET\`s have been studied. First of all, the degradation of gate-induced- drain-leakage current due to electron/hole trapping and surface electric field in off state MOSFET\`s which has appeared as an additional constraint in scaling down p-MOSFET\`s. The GIDL current in p-MOSFET\`s was decreased by hot-electron stressing, because the trapped charge were decreased surface-electric-field. But the GIDL current in n-MOS77T\`s under worse case was increased.

  • PDF

CMOS Transmission Gate Circuits Dissipating Leakage Power Only (누설전력소비만을 갖는 CMOS 전달게이트 회로)

  • Park, Dae-Jin;Chung, Kang-Min
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.467-468
    • /
    • 2008
  • In this paper, a logic family, the transmission gate CMOS(TG CMOS) is proposed, which combines the transmission gate and pass transistor resulting in a different configuration from traditional full CMOS. In the simulation, basic cells comprising this logic are designed and their dynamic responses are analyzed. The simulation shows their performance is exceeding that of conventional full CMOS.

  • PDF

A Low Power Asynchronous MSP430 Processor for Ubiquitous Sensor Network (편재형 센서네트워크 노드를 위한 저전력 비동기 MSP430 프로세서)

  • Shin, Chi-Hoon;Shang, Belong;Oh, Myeong-Hoon;Kim, Young-Woo;Kim, Sung-Nam;Yakovlev, Alex;Kim, Sung-Woon
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.451-453
    • /
    • 2007
  • This paper describes the design of an asynchronous implementation of a sensor network processor. The main purpose of this work is the reduction of power consumption in sensor network node processors and the research presented here tries to explore the suitability of asynchronous circuits for this purpose. The Handshake Solutions toolkit is used to implement an asynchronous version of a sensor processor. The design is made compact, trading area and leakage power savings with dynamic power costs, targeting the typical sparse operating characteristics of sensor node processors. It is then compared with a synchronous version of the same processor. Both versions are then compared with existing commercial processors in terms of power consumption.

  • PDF

Design and Implementation of Low power ALU based on NCL (Null Convention Logic) (NCL 기반의 저전력 ALU 회로 설계 및 구현)

  • Kim, Kyung Ki
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.18 no.5
    • /
    • pp.59-65
    • /
    • 2013
  • Conventional synchronous design circuits cannot only satisfy the timing requirement of the low voltage digital systems, but also they may generate wrong outputs under the influence of PVT variations and aging effects. Therefore, in this paper, a NCL (Null Convention Logic) design as an asynchronous design method has been proposed, where the NCL method doesn't require any timing analysis, and it has a very simple design methodology. Base on the NCL method, a new low power reliable ALU has been designed and implemented using MagnaChip-SKhynix 0.18um CMOS technology. The experimental results of the proposed NCL ALU have been compared to those of a conventional pipelined ALU in terms of power consumption and speed.

Hybrid complementary circuits based on organic/inorganic flexible thin film transistors with PVP/Al2O3 gate dielectrics

  • Kim, D.I.;Seol, Y.G.;Lee, N.E.;Woo, C.H.;Ahn, C.H.;Ch, H.K.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.479-479
    • /
    • 2011
  • Flexible inverters based on complementary thin-film transistor (CTFTs) are important because they have low power consumption and other advantages over single type TFT inverters. In addition, integrated CTFTs in flexible electronic circuits on low-cost, large area and mechanically flexible substrates have potentials in various applications such as radio-frequency identification tags (RFIDs), sensors, and backplanes for flexible displays. In this work, we introduce flexible complementary inverters using pentacene and amorphous indium gallium zinc oxide (IGZO) for the p-channel and n-channel, respectively. The CTFTs were fabricated on polyimide (PI) substrate. Firstly, a thin poly-4-vinyl phenol (PVP) layer was spin coated on PI substrate to make a smooth surface with rms surface roughness of 0.3 nm, which was required to grow high quality IGZO layers. Then, Ni gate electrode was deposited on the PVP layer by e-beam evaporator. 400-nm-thick PVP and 20-nm-thick ALD Al2O3 dielectric was deposited in sequence as a double gate dielectric layer for high flexibility and low leakage current. Then, IGZO and pentacene semiconductor layers were deposited by rf sputter and thermal evaporator, respectively, using shadow masks. Finally, Al and Au source/drain electrodes of 70 nm were respectively deposited on each semiconductor layer using shadow masks by thermal evaporator. Basic electrical characteristics of individual transistors and the whole CTFTs were measured by a semiconductor parameter analyzer (HP4145B, Agilent Technologies) at room temperature in the dark. Performance of those devices then was measured under static and dynamic mechanical deformation. Effects of cyclic bending were also examined. The voltage transfer characteristics (Vout- Vin) and voltage gain (-dVout/dVin) of flexible inverter circuit were analyzed and the effects of mechanical bending will be discussed in detail.

  • PDF