• Title/Summary/Keyword: leaf rot

Search Result 187, Processing Time 0.03 seconds

Bacterial Leaf Spot and Dry Rot of Lettuce Caused by Xanthomonas campestris pv. vitians (Xanthomonas campestris pv. vitians에 의한 상추 세균성점무늬병)

  • Lee, Seung-Don;Lee, Jung-Hee;Kim, Yong-Ki;Heu, Sung-Gi;Ra, Dong-Soo
    • Research in Plant Disease
    • /
    • v.13 no.1
    • /
    • pp.66-70
    • /
    • 2007
  • During 1997 and 1998, a new disease of lettuce (Lactuca sativa) was observed on greenhouse-grown plants in Kwangju and Kwangmyung. Lesions on leaves were irregular, small, pale green to black, water-soaked, and 2 to 5 mm in diameter, Coalescing lesions sometimes caused defoliation of older leaves. Isolations made from diseased leaves on yeast extract dextrose calcium carbonate agar yielded nearly pure cultures of a yellow pigmented bacterium typical of a xanthomonad. Two bacterial strains (SL0246 and SL1352) were purified and used for further tests. Pathogenicity of strains was confirmed on 5-week-old lettuce plants injected with bacterial suspensions containing $10^8$ cfu/ml of phosphate buffered saline. The representative Xanthomonas strains isolated from lettuce were compared with a reference strain X. campestris pv, vitians for fatty acid profiles and metabolic fingerprints using GN2 microplate, showing that all outcomes were indistinguishable between the representative and reference strains. This is the first report of bacterial leaf spot and dry rot of lettuce in Korea.

Ascospore Infection and Colletotrichum Species Causing Glomerella Leaf Spot of Apple in Uruguay

  • Alaniz, Sandra;Cuozzo, Vanessa;Martinez, Valentina;Stadnik, Marciel J.;Mondino, Pedro
    • The Plant Pathology Journal
    • /
    • v.35 no.2
    • /
    • pp.100-111
    • /
    • 2019
  • Glomerella leaf spot (GLS) caused by Colletotrichum spp. is a destructive disease of apple restricted to a few regions worldwide. The distribution and evolution of GLS symptoms were observed for two years in Uruguay. The recurrent ascopore production on leaves and the widespread randomized distribution of symptoms throughout trees and orchard, suggest that ascospores play an important role in the disease dispersion. The ability of ascospores to produce typical GLS symptom was demonstrated by artificial inoculation. Colletotrichum strains causing GLS did not result in rot development, despite remaining alive in fruit lesions. Based on phylogenetic analysis of actin, ${\beta}$-tubulin and glyceraldehyde-3-phosphate dehydrogenase gene regions of 46 isolates, 25 from fruits and 21 from leaves, C. karstii was identified for the first time causing GLS in Uruguay and C. fructicola was found to be the most frequent (89%) and aggressive species. The higher aggressiveness of C. fructicola and its ability on to produce abundant fertile perithecia could help to explain the predominance of this species in the field.

Inhibition of Penicillium Bulb Rot by Fungicides and Culture Broth of Antagonistic Bacteria during Storage of Lilium Oriental Hybrids (살균제 및 길항세균 배양액 처리에 의한 백합 저장구근의 부패 발생억제)

  • Kim, Byung Sup;Lee, In Kwon;Hong, See Jin;Kim, Hak Ki;Park, Se Won
    • Horticultural Science & Technology
    • /
    • v.19 no.4
    • /
    • pp.591-595
    • /
    • 2001
  • This study was conducted to find out the proper chemicals and doses for controlling the bulb disease of Lilium Oriental hybrids 'Capablanca' and 'Marco Polo' cultivars during storage, and to ascertain any disadvantage of the treatment on shoot growth and flower development. Bulbs of 'Casablanca' and 'Marco Polo' cultivars were dipped in some fungicide solutions, including azoxystrobin, benomyl+thiram, and prochloraz, and culture broth of antagonistic bacteria for one hour. The rot was apparently inhibited by azoxystrobin and prochloraz solution dippings and it was not by benomyl+thiram in bulbs produced domestically. To improve physiological integrity, calcium chloride was treated. However, this treatment had no positive effects on bulb rot of lily. When bulbs were dipped in one-fifth of diluted broth. But the bulb rot was inhibited effectively as compared with untreated during storage. Benomyl+thiram and that with calcium inhibited the sprouting in 'Casablanca' and 'Marco Polo' cultivars during cultivation. Calcium and benomyl+thiram treatments decreased growth of leaf and flower but with no statistically significant difference. Other fungicidal materials treated to bulbs showed no effect on vegetative growth and flower quality.

  • PDF

Plant Diseases of Safflower (Carthamus tinctorius) and Their Chemical Control (잇꽃의 식물병 발생양상과 주요 식물병의 약제방제)

  • Park, Kyeng-Seuk;Kim, Jae-Cheol;Choi, Seong-Yong;Park, So-Duk;Lee, Soon-Gu
    • Research in Plant Disease
    • /
    • v.10 no.3
    • /
    • pp.159-166
    • /
    • 2004
  • This study were carried out to identify pathogens and determine the seasonal occurrence and chemical control of safflower (Carthamus tinctorius) diseases from 2000 to 2002 in Gyengbuk province, Korea. Major diseases of safflower were, anthracnose caused by Colletotricum acutatum in open field, and gray mold by Botrytis cinerea in rain sheltered plastic house. Other diseases occurred were powdery mildew caused by Sphaerotheca fuliginea, collar rot by Sclerotium rolfsii, leaf spot by Alternaria carthami and A. alternata, rust by Puccinia carthami, root-rot and stem-rot by Phytophthora cactorum, root-rot and wilt by Fusarium oxysporum and damping-off by Pythium ultimum. Seasonal occurrence of anthracnose on safflower has begun from late April, and increased until harvesting, especially rapid increased after rainfall during stem elongation season that is from May to June. In open fields, maximum incidence of anthracnose was 67 % in late July. But in rain-sheltered plastic house, it was very low, about 5% in July. Gray mold caused by Botrytis cinerea was most important disease in rain-sheltered plastic house cultivation. Maximum incidence of gray mold on floral head was 27.4%, whereas other diseases occurred below 1 %. In the test of the chemical control of the safflower anthracnose, metiram WP, carbendazim$.$kasugamycin WP and iminoctadintris$.$thiram WP were the highest controlling chemicals. In chemical control of gray mold, iminoctadintris$.$thiram WP, fluazinam WP and iprodion WP showed highest controlling effects.

Breeding of a Multi-flowering and Early-flowering White Calla Lily Cultivar 'White Cutie' Resistant to Soft Rot Disease (절화수량이 우수한 무름병 저항성 조생 백색칼라 'White Cutie' 육성)

  • Joung, Hyang Young;Cho, Hae Ryong;Rhee, Ju Hee;Shin, Hak Ki;Park, Sang Kun
    • Horticultural Science & Technology
    • /
    • v.33 no.4
    • /
    • pp.618-623
    • /
    • 2015
  • The new white calla lily (Zantedeschia aethiopica) cultivar 'White Cutie' was bred at the National Institute of Horticultural & Herbal Science (NIHHS) in 2011. 'Childsiana' showing the multi-flowering characteristic and 'Wedding March' resistant to soft rot disease were artificially crossed in 2004. Of the progeny, 'White Cutie' was selected specifically for use in cut flower production after investigation over seven years (2005 to 2011) of genetic and phenotypic characteristics, resistance against soft rot, and customer preference regarding the culture vigor and post-harvest quality. 'White Cutie' was early flowering (85.6 days to flowering) with white flowers (RHS W155C), although it had a mid-sized flower in which spathe height and width were 8.6 cm and 8.7 cm, respectively. It was multi-flowering (6.2 flowers per plant) and produced a very high number of cormels (13.4 per plant). Furthermore, it was resistant to soft rot disease.

Occurrence of Freesia Basal Rot Caused by Sclerotium sp. (Sclerotium sp.에 의한 프리지아 균핵병 발생)

  • Lee Sang-Yeob;Ryu Jae-Gee;Kim Yong-Ki
    • Research in Plant Disease
    • /
    • v.12 no.2
    • /
    • pp.69-74
    • /
    • 2006
  • Basal rot of freesia caused by a Sclerotium sp. occurred at Incheon areas. Incidence of the disease reached up to 45% and averaged 17.0% in the fields. Typical symptoms consisted of sheath dry and leaf blight due to rots on basal leaves. The causal fungus was identified as Sclerotium sp. based on following mycological characteristics. The fungus formed sclerotia on cultural media and plant tissues, but did not produce asexual spores. On cultural medium, aerial mycelia of the fungus changed color from white to clay with cultural age and smelled musty odor. Numerous irregular and elliptical black microsclerotia of the fungus were formed on potato dextrose agar (PDA) after 5 days of incubation at $25^{\circ}C$ and sized $115{\sim}200{\times}95{\sim}150 (av. 145{\sim}126.5){\mu}m$. The fungus grew at $10{\sim}32^{\circ}C$ and $pH 4.0{\sim}8.5$. However, the optimal temperature and pH for mycelial growth of the fungus were $24^{\circ}C$ and 5.5 respectively. The isolate showed present pathogenicity to not only freesia but gladiolus in the pathogenicity test, and the symptoms were similar to those observed in the fields. Basal rot of freesia caused by Sclerotium sp. is firstly reported in Korea.

Black Rot of Broccoli Caused by Xanthomonas campestris pv. campestris (Xanthomonas campestris pv. campestris에 의한 브로콜리의 검은썩음병)

  • Lee Seung-Don;Lee Jung-Hee;Kim Sun-Yee;Kim Yong-Ki;Lee Yong-Hoon;Heu Sung-Gi;Ra Dong-Soo
    • Research in Plant Disease
    • /
    • v.12 no.2
    • /
    • pp.134-138
    • /
    • 2006
  • A new bacterial disease of broccoli (Brassica oleracea var. italica) was observed on field-grown plants in Pyungchang during 2003 and 2004. Seedling infections first appeared as a blackening along the margins of the cotyledon. Cotyledon shriveled and dropped off. Infected seedlings were stunted and yellowed and eventually died. The disease was easily recognized by the presence of yellow, V-shaped, or U-shaped areas extending inward from margin of the leaf. As the disease progressed, the yellow lesions turned brown and the tissues died. Isolations made from diseased leaves on yeast extract dextrose calcium carbonate agar yielded nearly pure cultures of a yellow-pigmented bacterium typical of a xanthomonad. Two bacterial strains were purified and used for further tests. Pathogenicity of strains was confirmed on 3-week-old crucifer (cabbage, Chinese cabbage, kale, radish and broccoli) plants cut by scissors with bacterial suspensions containing $10^8 cfu/ml$ of phosphate buffered saline. The Biolog and fatty acid analyses and 16S rDNA sequencing of two strains (SL4797 and SL4800) from broccoli black rot showed that they could be identified as X. campestris pv. campestris because of their high similarity to the tester strain (X. campestris pv. campestris NCPPB528) with a match probability of 100%. This is the first report of black rot of broccoli in Korea.

Assessment of the resistance of bacterial soft rot caused by Pectobacterium carotovorum subsp. carotovorum KACC 21701 in Kimchi cabbage genetic resources

  • Parthiban Subramanian;Ho Chul Ko;Seong-Hoon Kim;Jae Eun Lee;Aejin Hwang;Bichsaem Kim;Yoon-Jung Lee;Awraris Derbie Assefa;Onsook Hur;Nayoung Ro;Jung Sook Sung;Ju Hee Rhee;Ho-Sun Lee;Bum-Soo Hahn
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.4
    • /
    • pp.433-441
    • /
    • 2022
  • Bacterial phytopathogen Pectobacterium causes soft rot disease in several vegetable crops globally, resulting in heavy agricultural losses at both the pre and postharvest stages. The present work was carried out to screen Kimchi cabbage genetic resources conserved at the National Agrobiodiversity Center, Rural Development Administration, Korea, for resistance against the soft rot pathogen Pectobacterium carotovorum subsp. carotovorum KACC 21701 over a period of three years (from 2020 to 2022). Infection of the phytopathogen was carried out at four-leaf stage and for each accession, twenty-five plants per germplasm were infected with KACC 21701. Kimchi cabbage cultivars Wangmatbaechu, Seoulbaechu, and CR Kiyoshi were used as control. Seven-days post-infection, the Disease Index (DI) values were manually recorded from zero to four, zero matched perfectly heathy plants and four completely dead plants. The 682 accessions of Kimchi cabbage exhibited varying degrees of disease resistance to KACC 21701 and thirty accessions, exhibiting a DI≤2, were considered for replication studies. During the replication studies, four landrace germplasms (IT102883, IT120036, IT120044, and IT120048) and one cultivar(IT187919) were confirmed to be moderately susceptible to KACC 21701. Results of the preliminary screening as well as replication studies were documented for the all the 682 germplasms. Addition of such information to the passport data of stored germplasms might serve as potential bio-resource for future breeders and researchers to develop resistant varieties or study the mechanisms involved in resistance of plants to such phytopathogen.

Etiology of Apple Leaf Spot Caused by Colletotrichum spp. in China

  • WANG, Wei;FU, Dan-Dan;ZHANG, Rong;SUN, Guang-Yu
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.05a
    • /
    • pp.37-37
    • /
    • 2014
  • Glomerella leaf spot pathogens can infect apple leaves, causing extensive necrosis and premature defoliation, as well as necrotic spots on fruit. In recent years, the disease has been reported with increasing frequency in China, and appears to be spreading rapidly in some apple-producing areas. In this study, fungal isolates from diseased apples leaves collected in Henan and Shaanxi provinces were analyzed based on morphology, cultural characters, pathogenicity and molecular phylogenetics. It was found that Glomerella leaf spot of apple was caused by two pathogens, Colletotrichum fructicola and C. aenigma. Pathogenicity tests showed that C. fructicola and C. aenigma could infect apple leaves of cultivar Golden Delicious, as well as Gala, Qinguan, Pink Lady, Pacific Rose, Golden Century and Honeycrisp, all of which include Golden Delicious in their parentage. In wound inoculation experiments, C. fructicola and C. aenigma were pathogenic to fruit of Gala, Qinguan, Golden Delicious, Pacific Rose, Starkrimson and Fuji. With non-wounded fruit, C. fructicola was pathogenic to Gala and Golden Delicious, and C. aenigma was pathogenic to Gala. It is concluded that the two pathogens could be differentiated according to pathogenicity to leaves and fruits of different apple cultivars.

  • PDF

Occurrence of Pythium Blight Caused by Pythium aphanidermatum on Chewing Fescue (Pythium aphanidermatum에 의한 Chewing Fescue에 잎마름병 발생)

  • Chang, Taehyun;Lee, Yong Se
    • Weed & Turfgrass Science
    • /
    • v.2 no.3
    • /
    • pp.306-311
    • /
    • 2013
  • Pythium blight occurred by Pythium aphanidermatum on chewing fescue cv. "Jamestowm II" from early June, 2010 and 2011 at the test field in Daegu University in Gyeongbuk Province, Korea. Disease symptoms on the turfgrass were leaf blights dying from the leaf tip and root rot, which appeared patches of brown to dark brown color or gray brown color in the field. The pathogens (40-1 isolate) of Pythium blight was isolated from the diseased leaf and crown tissue and cultured on potato-dextrose agar (PDA) for identification. Lobulate sporangia were inflated, complex structures, and filamentous sporangia were usually indistinguishable from vegetative hyphae. Sequences of ribosomal RNA gene of the fungus were homologous with similarity of 100% to those of P. aphanidermatum isolates in GenBank database. Pathogenicity was also confirmed on the chewing fescue, creeping betgrass and Kentucky bluegrass by Koch's postulates. This is the first report of Pythium blight on chewing fescue caused by P. aphanidermatum in Korea.