• Title/Summary/Keyword: lead plate

Search Result 311, Processing Time 0.027 seconds

The Study on Improvement of Flexural Performance of RC Beam Strengthened with CFRP Plate (탄소섬유보강판으로 보강된 철근콘크리트 보의 휨성능 개선에 관한 연구)

  • 한상훈;최만용;조홍동;박중열;황선일;김경식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.399-404
    • /
    • 2002
  • This paper presents the results cf research on improved flexural performance cf reinforced concrete beams strengthened with bonded carbon fiber reinforced polymer plate. Recently, strengthening technique with CFRP plate were almost carried out by external bonding. But current external bonding technique cf CFRP plates may result in debonding CFRP plate. Therefore, this study proposes a strengthening method that prevents or delays debonding between CFRP plates and concrete and at the same time improves the strength. For this test, there were only 14 test beams manufactured and failure load, deflection, strains and modes cf failure have been examined Test variables included the type cf strengthening, steel ratio and strengthening length, and the effects according to each test variables were analyzed. The experimental results show that the strength and stiffness cf the beam significantly increased between 34.55 and 116.51% and the increase cf the more lead-carrying capacity than the control beams.

  • PDF

Deburring Technology of Vacuum Plate for MLCC Lamination Using Magnetic Abrasive Polishing and ELID Process (MLCC 적층용 진공척의 자기연마와 ELID연삭을 이용한 미세버 제거 기술)

  • Lee, Yong-Chul;Shin, Gun-Hwi;Kwak, Tae-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.3
    • /
    • pp.149-154
    • /
    • 2015
  • This study has focused on the deburring technology of a vacuum plate for MLCC lamination using electrolytic in-process dressing (ELID) grinding, and the magnetic-assisted polishing (MAP) process. The surface of the vacuum plate has many micro-holes for vacuum suction. They are easily blocked by the burrs created in the surface-flattening process, such as the conventional grinding process. In this study, the MAP process, the ELID grinding process, and an ultrasonic vibration table are examined to remove the micro-burrs that lead to the blockage of the holes. In the results of the experiments, the MAP process and ELID grinding technology showed significant improvements of surface roughness and deburring performance.

The Bending Analysis of Three Phase Polymer Composite Plate Reinforced by Glass Fiber and Titanium Oxide Particles Including Creep Effect

  • Duc, Nguyen Dinh;Minh, Dinh Khac;VanThu, Pham
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.4
    • /
    • pp.360-365
    • /
    • 2010
  • Three phase composite materials are widely used in the shipbuilding industry. When reinforced with fiber and particle, the physical and mechanical properties of polymer composite materials are improved. This paper presents the bending analysis of a three phase composite plate with an epoxy matrix, reinforced glass fiber and titanium oxide particles including creep effect when shear stress is taken into account. The obtained results indicate that creep strains lead to compression in the composite material. Introducing reinforced fibers and particles reduces the plate's deflection, when increasing the stretch coefficient allows the calculation of creep deflection during a long loading period.

Impact onto an Ice Floe

  • Khabakhpasheva, Tatyana;Chen, Yang;Korobkin, Alexander;Maki, Kevin
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.4 no.4
    • /
    • pp.146-162
    • /
    • 2018
  • The unsteady problem of a rigid body impact onto a floating plate is studied. Both the plate and the water are at rest before impact. The plate motion is caused by the impact force transmitted to the plate through an elastic layer with viscous damping on the top of the plate. The hydrodynamic force is calculated by using the second-order model of plate impact by Iafrati and Korobkin (2011). The present study is concerned with the deceleration experienced by a rigid body during its collision with a floating object. The problem is studied also by a fully-nonlinear computational-fluid-dynamics method. The elastic layer is treated with a moving body-fitted grid, the impacting body with an immersed boundary method, and a discrete-element method is used for the contact-force model. The presence of the elastic layer between the impacting bod- ies may lead to multiple bouncing of them, if the bodies are relatively light, before their interaction is settled and they continue to penetrate together into the water. The present study is motivated by ship slamming in icy waters, and by the effect of ice conditions on conventional free-fall lifeboats.

Effect of Additional Pulse to Remove the Sulfate Film on the Charging Capacity in the Industrial Lead-Acid Battery (극판 피막 분해용 펄스파가 산업용 연축전지의 충전용량에 미치는 영향)

  • Choi, Kwang-Gyun;Yoo, Ho-seon
    • Plant Journal
    • /
    • v.16 no.4
    • /
    • pp.40-44
    • /
    • 2020
  • In this study, after supplying a pulse wave to the 2 V Industrial Lead-Acid Battery electrode plate and repeating the charging and discharging, the discharging time per voltage was analyzed. According to the result of experiment, while the lead-acid Battery that a pulse wave is not supplied decreased about 18 % of discharging capacity than the beginning, the lead-acid Battery that a pulse wave is supplied decreased a little amount much lower than 18 %, of discharging capacity and recorded the 0.56 % decrease, at a minimum, from discharging capacity at the 20 kHz frequency. This means that the sulfate on electrode plate is detached and the positive and negative charge transfer is highly activated at the 20 kHz frequency

Analysis of a Plate-type Piezoelectric Composite Unimorph Actuator Considering Thermal Residual Deformation (잔류 열 변형을 고려한 평판형 압전 복합재료 유니모프 작동기의 해석)

  • Goo Nam-Seo;Woo Sung-Choong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.4 s.247
    • /
    • pp.409-419
    • /
    • 2006
  • The actuating performance of plate-type unimorph piezoelectric composite actuators having various stacking sequences was evaluated by three dimensional finite element analysis on the basis of thermal analogy model. Thermal residual stress distribution at each layer in an asymmetrically laminated plate with PZT ceramic layer and thermally induced dome height were predicted using classical laminated plate theory. Thermal analogy model was applied to a bimorph cantilever beam and LIPCA-C2 actuator in order to confirm its validity. Finite element analysis considering thermal residual deformation showed that the bending behavior of piezoelectric composite actuator subjected to electric loads was significantly different according to the stacking sequence, thickness of constituent PZT ceramic and boundary conditions. In particular, the increase of thickness of PZT ceramic led to the increase of the bending stiffness of piezoelectric composite actuator but it did not always lead to the decrease of actuation distance according to the stacking sequences of piezoelectric composite actuator. Therefore, it is noted that the actuating performance of unimorph piezoelectric composite actuator is rather affected by bending stiffness than actuation distance.

Numerical Analysis of MDF for Aluminum Plate Cutting (MDF를 이용한 알루미늄 평판 절개 해석)

  • Lee, Juho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.6
    • /
    • pp.134-141
    • /
    • 2018
  • In this paper, the possibility of using an MDF (Mild-detonating Fuse) as a linear separation device is studied. An MDF is a small diameter metal (lead) tube filled with explosives (RDX). Aluminum plate cutting experiments are carried out with different values of target plate thickness and explosives per unit length. Based on the experimental results, a numerical analysis method including the failure criteria is established. The mechanism and characteristics of using MDFs for aluminum plate cutting are identified; the possibility of using the current system as a linear separation device is verified. By utilizing a developed numerical method, the separation reliability for diverse structures and MDFs can be predicted in advance and the number of experiments required for development can be minimized.

Bending analysis of an imperfect FGM plates under hygro-thermo-mechanical loading with analytical validation

  • Daouadji, Tahar Hassaine;Adim, Belkacem;Benferhat, Rabia
    • Advances in materials Research
    • /
    • v.5 no.1
    • /
    • pp.35-53
    • /
    • 2016
  • Flexural bending analysis of perfect and imperfect functionally graded materials plates under hygro-thermo-mechanical loading are investigated in this present paper. Due to technical problems during FGM fabrication, porosities and micro-voids can be created inside FGM samples which may lead to the reduction in density and strength of materials. In this investigation, the FGM plates are assumed to have even and uneven distributions of porosities over the plate cross-section. The modified rule of mixture is used to approximate material properties of the FGM plates including the porosity volume fraction. In order the elastic coefficients, thermal coefficient and moisture expansion coefficient of the plate are assumed to be graded in the thickness direction. The elastic foundation is modeled as two-parameter Pasternak foundation. The equilibrium equations are given and a number of examples are solved to illustrate bending response of Metal-Ceramic plates subjected to hygro-thermo-mechanical effects and resting on elastic foundations. The influences played by many parameters are investigated.

a study on the Electrical and acoustical properties of PZT ceramic. (PZT 계 압전세라믹스의 전기 및 음향특성에 관한 연구)

  • Kim, S.J.;Kim, H.G.;Lee, D.C.
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.333-334
    • /
    • 1989
  • Electrically active part of the piezoelectric sound element is a ceramic thin circular disk cemented to a metal base plate (using a type of thermosetting epoxy). The active part is a thin lead zirconate titanate disk (PZT). The piezoelectric sound element is so dimensioned that its basic resonance frequency is approximately if the center of the audible frequency band: This frequency is mainly determined by the geometry and the sort of the metal base plate materials. In this study, four kinds of PZT ceramic and two classes of thin metal base plate were prepared. It is observed that dielectric and pizoelectric properties relate to acoustical properties (particularly sound pressure level).

  • PDF

판상형 산화아연의 합성 및 응용에 관한 연구 동향

  • Jang, Ui-Sun
    • Ceramist
    • /
    • v.20 no.4
    • /
    • pp.55-73
    • /
    • 2017
  • As one of the most versatile semiconductors, zinc oxide (ZnO) with one-dimensional (1-D) nanostructures has been significantly developed for the application of ultraviolet (UV) lasers, photochemical sensors, photocatalysts, and so on. Such 1-D nanowires could be easily achieved due to the anisotropic growth rate along the [0001] direction. However, such typical growth habit leads to decrease the surface area of the (0001) plane, which plays a central role in not only UV lasing action but also photocatalytic reaction. This fact lead us to develop ZnO crystal with enhanced polar surface area through crystal growth control. The purpose of this review is to provide readers a simple route to plate-type ZnO crystal with highly enhanced polar surfaces and their applications for UV-laser, photocatalyst, and antibacterial agents. In addition, we will highlight the recent study on pilot-scale synthesis of plate-type ZnO crystal for industrial applications.