Browse > Article
http://dx.doi.org/10.5574/JAROE.2018.4.4.146

Impact onto an Ice Floe  

Khabakhpasheva, Tatyana (School of Mathematics, University of East Anglia)
Chen, Yang (Department of Naval Architecture and Marine Engineering, University of Michigan)
Korobkin, Alexander (School of Mathematics, University of East Anglia)
Maki, Kevin (Department of Naval Architecture and Marine Engineering, University of Michigan)
Publication Information
Journal of Advanced Research in Ocean Engineering / v.4, no.4, 2018 , pp. 146-162 More about this Journal
Abstract
The unsteady problem of a rigid body impact onto a floating plate is studied. Both the plate and the water are at rest before impact. The plate motion is caused by the impact force transmitted to the plate through an elastic layer with viscous damping on the top of the plate. The hydrodynamic force is calculated by using the second-order model of plate impact by Iafrati and Korobkin (2011). The present study is concerned with the deceleration experienced by a rigid body during its collision with a floating object. The problem is studied also by a fully-nonlinear computational-fluid-dynamics method. The elastic layer is treated with a moving body-fitted grid, the impacting body with an immersed boundary method, and a discrete-element method is used for the contact-force model. The presence of the elastic layer between the impacting bod- ies may lead to multiple bouncing of them, if the bodies are relatively light, before their interaction is settled and they continue to penetrate together into the water. The present study is motivated by ship slamming in icy waters, and by the effect of ice conditions on conventional free-fall lifeboats.
Keywords
Impact loads; Ice floe; Hertz model; Elastic foundation; Water entry;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ermanyuk, E. V. and Ohkusu, M., "Impact of a disk on shallow water," Journal of Fluids and Structures, Vol. 20(3), pp.345-357, 2005.   DOI
2 Hertz, H., "Ueber die Beruhrung fester elastischer Korper," J Reine Angew Math., Vol. 92, pp.156-171, 1882.
3 Iafrati, A. and Korobkin, A.A., "Hydrodynamic loads during early stage of flat plate impact onto water surface," Physics of Fluids, Vol. 20(8), p.082104, 2008.   DOI
4 Iafrati, A. and Korobkin, A.A., "Asymptotic estimates of hydrodynamic loads in the early stage of water entry of a circular disk," Journal of Engineering Mathematics, Vol. 69(2-3), pp.199-224, 2011.   DOI
5 Johnson, K. L., Contact mechanics, Cambridge University Press, London, 1987.
6 Jordaan, I.J., and Timco, G.W, "Dynamics of the ice-crushing process," Journal of Glaciology, Vol. 34(118), pp.318-326, 1988.   DOI
7 Joukowski, N. E., "On impact of two spheres, one of which floats in liquid," Zap. Mat. Otd. Novorossiiskogo Obshchestva Estestvoispytatelej, Vol. 5, pp.43-48, 1884.
8 Khabakhpasheva, T. I. and A. A. Korobkin, A.A., "Oblique impact of a smooth body on a thin layer of inviscid liquid," Proc. R. Soc. A, Vol. 469, no. 2151, 20120615, pp.1-14, 2013.
9 Khabakhpasheva, T.I., Chen Y., Korobkin A.A., and Maki K., "Water impact near the edge of a floating ice sheet," In Proc. 33rd International Workshop Water Waves Floating Bodies, Guidel-Plages, France, 4-7 April, 4pp, 2018.
10 Korobkin, A., "Unsteady hydroelasticity of floating plates," Journal of Fluids and Structures, Vol. 14, no. 7, pp.971-991, 2000.   DOI
11 Korobkin, A., "Water impact problems in ship hydrodynamics," In: Ohkusu M (ed) Advances in marine hydrodynamics, chap 7. Computational Mechanics Publications, Southampton, Boston, pp.323-371, 1996.
12 Korobkin, A., Khabakhpasheva, T., Malenica, S., Kim, Y., "A comparison study of water impact and water exit models," International Journal of Naval Architecture and Ocean Engineering, Vol. 6(4), pp.1182-1196, 2014.   DOI
13 Lubbad, R. and Loset, S., "A numerical model for real-time simulation of ship-ice interaction," Cold Regions Science and Technology, Vol. 65(2), pp.111-127, 2011.   DOI
14 Korobkin, A. A. and Ohkusu, M., "Impact of two circular plates one of which is floating on a thin layer of liquid," Journal of Engineering Mathematics, Vol. 50(4), pp.343-358, 2004.   DOI
15 Kurdyumov, V. A., and Kheisin, D.E., "Hydrodynamic Model of the Impact of a Solid on Ice," Soviet Applied Mechanics, Vol. 12(10), pp.1063-1068, 1976.   DOI
16 Lloyd's report "Arctic opening: Opportunity and Risk in the High North", 2012.
17 Mahrenholtz, O.H., "Beam on viscoelastic foundation: an extension of Winkler's model," Archive of Applied Mechanics, Vol. 80(1), pp.93-102, 2010.   DOI
18 Piro, D.J., A Hydroelastic Method for the Analysis of Global Ship Response Due to Slamming Events, Doctoral dissertation, University of Michigan, 2013.
19 Timoshenko, S. and Young, D.H., Vibration Problems in Engineering, D. van Nostrand Company, 1955.
20 Re, S. and Veitch, B., "Performance limits of evacuation systems in ice," In: Proceeding of 17th International Conference on Port and Ocean Engineering under Arctic Conditions, Trondheim, Norway, pp.807-817, 2003.
21 Wagner, H., "Uber Stoss- und Gleitvorgange an der Oberache von Flussigkeiten," ZAMM, Journal of Applied Mathematics and Mechanics/Zeitschrift fur Angewandte Mathematik und Mechanik, Vol. 12(4), pp.193-215, 1932.   DOI
22 Winkler, E., Die Lehre von der Elasticitaet und Festigkeit: mit besonderer R ucksicht auf ihre Anwendung in der Technik fur polytechnische Schulen, Bauakademien, Ingenieue, Maschinenbauer, Architecten, etc. Dominicus, 1867.
23 Ye, H., Chen, Y., and Maki, K.J., \A Direct-Forcing Immersed Boundary Method for Moving Bodies on Unstructured Grids", 2018. (in preparation).
24 Fryba, L.," History of Winkler foundation," In Proceedings of the 3rd Herbertov Workshop Inter- action of Railway Vehicles with the Track and its Substructure, Knothe, K., Grassie, S.L., Elkins, J.A. (eds.), Herbertov, Czech Republic, September 1994. Vehicle System Dynamics Supplement, vol. 24, pp. 7-12, 1995.