• Title/Summary/Keyword: lead plate

Search Result 314, Processing Time 0.026 seconds

High Throughput Screening for Searching a New Inhibitors of Acetolactate Synthase (Acetolactate synthase에 대한 고효율 활성 측정방법 및 신규 저해제 탐색)

  • Park, S.H.;Lee, K.H.;Choi, J.S.;Pyon, J.Y.;Cho, K.Y.;Hwang, I.T.
    • The Korean Journal of Pesticide Science
    • /
    • v.5 no.3
    • /
    • pp.41-46
    • /
    • 2001
  • This study was conducted to develop a high throughput system for screening acetolactate synthase(ALS) inhibitors, and to detect basic mother molecules for developing new novel herbicide candidates. The high throughput screening (HTS) method using 96-well plate and microplate reader was developed. This method is 8 times more effective than basic technique in one cycle per person. Futhermore, considering for less than 1/10 volume of materials required for ALS test and enzyme kinetics with 16 times faster speed compared to those of former procedure, this HTS method has more than 100 times higher efficacy than basic system in a consecutive procedure. We discovered 11 new ALS inhibitors such as 2-oxoglutaric acid, aminooxyacetic acid, azelaic acid, citric acid, cyanuric fluoride, itaconic acid, malonic acid, niclosamide, oxalic acid, glyoxylic acid, and suramin from 107 commercial plant-specific inhibitors using this technique. We hope these results might be useful to discover lead compounds for developing new novel herbicide candidate.

  • PDF

An Performance Evaluation of Seismic Retrofitted Column Using FRP Composite Reinforcement for Rapid Retrofitting (긴급시공이 가능한 FRP 복합재료 보강재로 보강된 기둥의 내진성능평가)

  • Kim, Jin-Sup;Seo, Hyun-Su;Lim, Jeong-Hee;Kwon, Min-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.1
    • /
    • pp.47-55
    • /
    • 2014
  • As increasing number of large-size earthquake around Korean peninsula, many interests have been focused to the earthquake strengthening of existing structures. The brittle fracture of Non-seismic designed columns lead to full collapse of the building. In the past, cross-sectional extension method, a steel plate reinforcing method and fiver-reinforced method are applied to Seismic Rehabilitation Technique mainly. However, the reinforcement methods have drawbacks that induce physical damage to structures, large space, long duration time. So, in this study, performance evaluation of previously developed FRP seismic reinforcement which do not induce physical damage and short duration time was enforced. The specimens were constructed with 80% downscale. FRP seismic reinforcement are manufactured of glass fiber or aluminum plate with holes and glass fiber. From the experiment results, seismic performance of specimens which reinforced with FRP seismic reinforcement were increased.

Effect of Distribution System Materials and Water Quality on Heterotrophic Plate Counts and Biofilm Proliferation

  • CHANG , YOUNG-CHEOL;JUNG, KWEON
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.1114-1119
    • /
    • 2004
  • The biofilms on pipe walls in water distribution systems are of interest since they can lead to chlorine demand, coliform growth, pipe corrosion, and water taste and odor problems. As such, the study described in this paper is part of an AWWARF and Tampa Bay Water tailored collaboration project to determine the effect of blending different source waters on the water quality in various distribution systems. The project was based on 18 independent pilot distribution systems (PDS), each being fed by a different water blend (7 finished waters blended in different proportions). The source waters compared were groundwater, surface water, and brackish water, which were treated in a variety of pilot distribution systems, including reverse osmosis (RO) (desalination), both membrane and chemical softening, and ozonation-biological activated carbon (BAC), resulting in a total of 7 different finished waters. The observations from this study consistently demonstrated that unlined ductile iron was more heavily colonized by a biomass than galvanized steel, lined ductile iron, and PVC (in that order) and that the fixed biomass accumulation was more influenced by the nature of the supporting material than by the water quality (including the secondary residual levels). However, although the bulk liquid water cultivable bacterial counts (i.e. heterotrophic plate counts or HPCs) did not increase with a greater biofilm accumulation, the results also suggested that high HPCs corresponded to a low disinfectant residual more than a high biofilm inventory. Furthermore, temperature was found to affect the biofilms, plus the AOC was important when the residual was between 0.6 and 2.0 mg $Cl_2/l$. An additional aspect of the current study was that the potential of the exoproteolytic activity (PEPA) technique was used along with a traditional so-called destructive technique in which the biofilm was scrapped off the coupon surface, resuspended, and cultivated on an R2A agar. Both techniques indicated similar trends and relative comparisons among the PDSs, yet the culturable biofilm values for the traditional method were several orders of magnitude lower than the PEPA values.

Analytical Method for Bending Moment of Slab-on-Steel-Girder Bridge (강판형교 바닥판 모멘트의 해석기법)

  • Park, Nam Hoi;Choi, Jin Yu;Yu, Chul Soo;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.1 s.44
    • /
    • pp.17-28
    • /
    • 2000
  • The current specifications for bridge decks requires the same amount of upper and lower reinforcement mats. There have been many empirical activities that the partial elimination of upper reinforcing bars was not caused the structural integrity of a deck. A simplified method is derived based on thin plate theory for three and four-girder-span bridge decks. A simplified method for bridge deck considering the effect of girder deflection is proposed based on a closed-form solution that shows good agreement with the results of finite element models. In this research, a new design approach for deck slabs is proposed based on the simplified method. The negative bending moments in a deck can be evaluated with the simplified method based on the position of a wheel load, the aspect ratio and relative stiffness and the span length. This new approach can lead to a significant reduction of the quantity of the top reinforcing steel bars in a deck. Reducing the quantify of the top reinforcement not only reduces the construction costs for bridge decks, but also reduces the corrosion of reinforcement to a minimum.

  • PDF

A Study on the Flow Characteristics of the Catalytic Combustor for the Gas Turbine (가스터빈용 촉매 연소기의 유동 특성에 관한 연구)

  • Hong, Dong-Jin;Kim, Chong-Min;Kim, Man-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.9
    • /
    • pp.792-798
    • /
    • 2007
  • catalytic combustion is accomplished by the chemical reaction between fuel and oxidizer at the catalyst surface, different from conventional combustion. Therefore, it is important that the fuel and air stream are well mixed and supplied uniformly prior to the combustion region. If the flow is maldistributed, a hot spot may occur that can lead to subsequent catalyst and substrate damage. Therefore, in order to enhance the mixing and flow uniformity, in this study, the perforated plate is used. A numerical simulation is performed to investigate the variation of flow characteristics by changing various parameters. Under each condition, the uniformity of the flow stream at the entrance of the catalyst section is evaluated and compared. The results show that the uniformity can be effectively improved for most of the case by using the well-designed perforated plates.

Isogeometric Shape Design Sensitivity Analysis of Mindlin Plates (민들린 평판의 아이소-지오메트릭 형상 설계민감도 해석)

  • Lee, Seung-Wook;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.4
    • /
    • pp.255-262
    • /
    • 2013
  • In this paper, a shape design sensitivity analysis(DSA) method is presented for Mindlin plates using an isogeometric approach. The isogeometric method possesses desirable advantages; the representation of exact geometry and the higher order inter-element continuity, which lead to the fast convergence of solution as well as accurate sensitivity results. Unlike the finite element methods using linear shape functions, the isogeometric method considers the exact normal vector and curvature of the CAD geometry, taking advantages of higher order NURBS basis functions. A selective reduced integration(SRI) technique is incorporated to overcome the difficulty of 'shear locking' phenomenon. This simple technique is surprisingly helpful for the accuracy of the isogeometric shape sensitivity without complicated formulation. Through the numerical examples of plate bending problems, the accuracy of the proposed isogeometric analysis method is compared with that of finite element one. Also, the isogeometric shape sensitivity turns out to be very accurate when compared with finite difference sensitivity.

Heat/Mass Transfer on Effusion Plate with Circular Pin Fins for Impingement/Effusion Cooling System with Intial Crossflow (초기 횡방향 유동이 존재하는 충돌제트/유출냉각에서 원형핀이 설치된 유출면에서의 열/물질전달 특성)

  • Hong Sung Kook;Rhee Dong-Ho;Cho Hyung Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.7 s.238
    • /
    • pp.828-836
    • /
    • 2005
  • Impingement/effusion cooling technique is used for combustor liner or turbine parts cooling in gas turbine engine. In the impingement/effusion cooling system, the crossflow generated in the cooling channel induces an adverse effect on the cooling performance, which consequently affects the durability of the cooling system. In the present study, to reduce the adverse effect of the crossflow and improve the cooling performance, circular pin fins are installed in impingement/effusion cooling system and the heat transfer characteristics are investigated. The pin fins are installed between two perforated plates and the crossflow passes between these two plates. A blowing ratio is changed from 0.5 to 1.5 for the fixed jet Reynolds number of 10,000 and five circular pin fin arrangements are considered in this study. The local heat/mass transfer coefficients on the effusion plate are measured using a naphthalene sublimation method. The results show that local distributions of heat/mass transfer coefficient are changed due to the installation of pin fins. Due to the generation of vortex and wake by the pin fin, locally low heat/mass transfer regions are reduced. Moreover, the pin fin prevents the wall jet from being swept away, resulting in the increase of heat/mass transfer. When the pin fin is installed in front of the impinging let, the blockage effect on the crossflow enhances the heat/mass transfer. However, the pin fin installed just behind the impinging jet blocks up the wall jet, decreasing the heat/mass transfer. As the blowing ratio increases, the pin fins lead to the higher Sh value compared to the case without pin fins, inducing $16\%{\~}22\%$ enhancement of overall Sh value at high blowing ratio of M=1.5.

Changes in Knee Joint Loading on Infilled Turf with Different Soccer Cleat Designs (축구화 스터드 형태에 따른 무릎 모멘트의 변화)

  • Park, Sang-Kyoon;Lee, Joong-Sook;Park, Seung-Bum;Stefanyshyn, Darren
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.2
    • /
    • pp.369-377
    • /
    • 2009
  • The purpose of this study was to determine the relationship between different soccer cleat designs and knee joint moments. Twelve physically active males (mean(SD): age: 26.4(6.2)yrs; height: 176.4(4.1)cm; mass: 74.0 (7.4)kg) were recruited Kinematic and force plate data were collected for all subjects during normal running and a $45^{\circ}$ cutting maneuver, called a v-cut. Both motions were performed at $4.0{\pm}0.2\;m/s$ on infilled artificial turf with three pairs of soccer cleats of different sole plate designs, and one pair of neutral running shoes. Inverse dynamics were used to calculate three dimensional knee joint moments, with repeated measures ANOVA and post hoc paired Student's t-test used to determine significance between shoe conditions. Significant differences were found in the extension moments of the knee for running trials, and for external rotation and adduction moments in the v-cutting trials. Knee moments were greater in v-cut than running, and the traditional soccer cleats (Copa Mondial and World Cup) tended to result in greater knee moments than the Nova runner or TRX soccer cleat. Cleat design was found to influence 3-dimensional knee moments in a v-cut maneuver. In the translational traction test, there were significant differences between all conditions. In the rotational traction test, friction with soccer shoes were greater than friction with running shoes. However, no differences were found between soccer shoes. Higher moments may lead to increased loads and stresses on knee joint structures, and thus, greater injury rates.

PHOTOELASTIC STRESS ANALYSIS OF LOAD TRANSFER TO SATELLITE ABUTMENT AS AN IMMEDIATE ABUTMENT (인공치아의 즉시부하를 위해 새로이 개발된 인공치아 지대주(Satellite Abutment)의 광탄성 응력 분석)

  • Park, Sang-Kyu;Lee, Baek-Soo;Engelke, W;Kim, Boo-Dong
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.28 no.6
    • /
    • pp.472-479
    • /
    • 2002
  • Since $Br^{\circ}anemark$ introduced the osseointegrated implants, they have been granted for useful methods for the restoration of oral function. The original $Br^{\circ}anemark$ protocol recommended long stress-free healing periods to achieve the osseointegration of dental implants. However, many clinical and experimental studies have shown that the osseointegration is no wonder in almost cases and that early and immediate loading may lead to predictable osseointegration. So we are willing to introduce the Satellite Abutment newly invented for immediate loading. We think that it will make the occlusal forces dispersed to surrounding bone and that we can restore the oral function immediately after implant installation not disturbing osseointegration. In case of using Satellite abutment, stress concentrated to bone contact area of implant was distributed not only fixation plate and screws but also superior, middle portion of implant and cortical layer of jaw bone. It was clearly decreased on the bone contact surfaces around dental implants. 1. Stress was decreased more than 76.5% when satellite straight abutment was used. 2. Stress was decreased more than 50% when satellite angled abutment was used. 3. The stress around dental implant was well distributed along the cortical bone surface and the fixation plate and screw. This study concludes that satellite abutment can be used as all immediate loading implant prothesis because it was possible to distribute periimplant occlusal stress through implant contact bone surface and cortical layer of jaw bone.

Novel Cylindrical Magnetic Levitation Stage for Rotation as well as Translation along Axles with High Precisions (고정밀 회전 및 축방향 이송을 위한 신개념 원통형 자기부상 스테이지)

  • Jeon, Jeong-Woo;Caraiani, Mitica;Lee, Chang-Lin;Jeong, Yeon-Ho;Kim, Jong-Moon;Oh, Hyeon-Seok;Kim, Sungshin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.12
    • /
    • pp.1828-1835
    • /
    • 2012
  • In this paper, a conceptual design and a detailed design of novel cylindrical magnetic levitation stage is introduced. This is came from planar-typed magnetic levitation stage. The proposed stage is composed of cylinder-typed permanent magnet array and semi-cylinder-typed 3 phase winding module. When a proper current is induced at winding module, a magnetic levitation force between the permanent magnet array and winding module is generated. The proposed stage can precisely move the cylinder to rotations and translations as well as levitations with the magnetic levitation force. This advantage is useful to make a nano patterning on the surface of cylindrical specimen by using electron beam lithography under vacuum. Two methods are used to calculate required magnetic levitation forces. The one is 2D FEM analysis, the other is mathematical modeling. This paper shown that results of two methods are similar. An assistant plate is introduced to reduce required currents of winding module for levitations in vacuum. The mathematical model of cylindrical magnetic levitation stage is used for dynamic simulation of magnetic levitations. A lead-lag compensator is used for control of the model. Simulation results shown that the detail designed model of the cylindrical magnetic levitation stage with the assistant plate can be controlled very well.