• Title/Summary/Keyword: lead measurement

Search Result 709, Processing Time 0.025 seconds

Minimum detectable activity of plastic scintillator for in-situ beta measurement system in ground water

  • Choi, Woo Nyun;Lee, UkJae;Bae, Jun Woo;Kim, Hee Reyoung
    • Nuclear Engineering and Technology
    • /
    • v.51 no.4
    • /
    • pp.1169-1175
    • /
    • 2019
  • The minimum detectable activity (MDA) value was derived according to the flow rate of the sample and degree of amplification of the device by sending the sample directly from the collection site to the detection part through a pump. This method can lead to reduction in time and cost compared to the existing measurement method that uses a pre-treatment process. In this study, experiments were conducted on $^3H$ and $^{90}Sr$, which are the major pure beta-emitting radionuclides, by setting the sample flow rate and the amplification gain as factors. The MDA values were derived according to the flow rates, considering that the flow rate can affect the MDA values. There were no change in the MDA under different flow rates of 0, 600, 800, and 1000 mL/min. Therefore, it was confirmed that the flow rate may not be considered when collecting samples for monitoring in actual field. As the degree of amplification of the amplifier increased, the time required to reach the target MDA decreased. When the amplification was quadrupled, the detection efficiency increased by approximately 23.4 times, and the time to reach the MDA decreased to approximately 1/550 times. This method offers the advantage of real-time on-site monitoring.

Field Measurement of Airborne Sound Insulation for Noise Reduction about Community Facilities in an Apartment Complex (공동주택 단지 내 주민공동시설의 소음 방지를 위한 공기전달음 차단 성능 현장 조사)

  • Seong, Yo-Han;Kim, Jin-Sik;Kim, Hye-Won;Cho, Seong-Jun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.249-250
    • /
    • 2023
  • The objective of this study is to evaluate the airborne sound insulation performance between housing units and community facilities during the construction phase. Community facilities adjacent to housing units can lead to noise problems, hence it is necessary to minimize noise transmission during the design phase. However, flanking noise transmitted through gaps of structures, windows, pipes, and other openings may result in substandard sound insulation performance falling below the design standards. Therefore, It is crucial to measure airborne sound insulation in the field during the construction phase. The measurement was conducted using the survey method for the field measurement of the airborne sound insulation in accordance with KS F ISO 10052:2021. Although the noise standards caused by community facilities in apartment complexes are not specified in current laws and regulations, desired noise level was set based on international guidelines for indoor noise. First, the level of noise generated in community facilities was estimated, and then the sound insulation performance was evaluated to determine whether the desired noise level was achieved.

  • PDF

Artificial Intelligence-Based CW Radar Signal Processing Method for Improving Non-contact Heart Rate Measurement (비접촉형 심박수 측정 정확도 향상을 위한 인공지능 기반 CW 레이더 신호처리)

  • Won Yeol Yoon;Nam Kyu Kwon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.6
    • /
    • pp.277-283
    • /
    • 2023
  • Vital signals provide essential information regarding the health status of individuals, thereby contributing to health management and medical research. Present monitoring methods, such as ECGs (Electrocardiograms) and smartwatches, demand proximity and fixed postures, which limit their applicability. To address this, Non-contact vital signal measurement methods, such as CW (Continuous-Wave) radar, have emerged as a solution. However, unwanted signal components and a stepwise processing approach lead to errors and limitations in heart rate detection. To overcome these issues, this study introduces an integrated neural network approach that combines noise removal, demodulation, and dominant-frequency detection into a unified process. The neural network employed for signal processing in this research adopts a MLP (Multi-Layer Perceptron) architecture, which analyzes the in-phase and quadrature signals collected within a specified time window, using two distinct input layers. The training of the neural network utilizes CW radar signals and reference heart rates obtained from the ECG. In the experimental evaluation, networks trained on different datasets were compared, and their performance was assessed based on loss and frequency accuracy. The proposed methodology exhibits substantial potential for achieving precise vital signals through non-contact measurements, effectively mitigating the limitations of existing methodologies.

Evaluation of the Apron Effectiveness during Handling Radiopharmaceuticals in PET/CT Work Environment (PET/CT 업무 환경에서 선원 취급 시 Apron의 실효성 평가)

  • Cho, Yong-In;Ye, Soo-Young;Kim, Jung-Hoon
    • Journal of radiological science and technology
    • /
    • v.38 no.3
    • /
    • pp.237-244
    • /
    • 2015
  • Health professionals in nuclear medicine were known that they get high radiation exposure. To reduce radiation exposure, using shielding materials is needed. In this study, we analyzed the shielding effect about apron during 18F-FDG treatment by using simulation based on Monte Carlo techniques and actual measurement. As a result, absorbed dose distribution of organ varies with handling position of the source. Dose reduction ratio by lead thickness of apron tended to decease, when handling position of the source come close to organ and away from radiation source for simulation. In the case of actual measurement with the dosimetry device, It showed that mean spatial dose distribution was different due to characteristics of dosimetry device. However, spatial dose rate was exponentially reduced according to distance with increasing lead content.

Characterization of the Soldering Interface in Power Modules by Peel Strength Measurement (벗김강도 측정법에 의한 파워 모듈의 솔더접합 특성 평가)

  • Kim, Nam-Kyun;Lee, Hee-Heung;Bahng, Wook;Seo, Kil-Soo;Kim, Eun-Dong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.12
    • /
    • pp.1142-1149
    • /
    • 2003
  • The strength and characteristics of the soldering interface of the power semiconductor chip in a power module has been firstly surveyed by the peel strength measurement method. A power module is combined with several power chips which generally has 30∼400$\textrm{mm}^2$ chip area to allow several tens or bigger amps in current rating, so that the traditional methods for interface characterization like shear test could not be applied to high power module. In this study power diode modules were fabricated by using lead-tin solder with 10${\times}$10$\textrm{mm}^2$ or 7${\times}$7$\textrm{mm}^2$ soldering interface. The peel strengths of soldered interfaces were measured and then the microscopic investigation on the fractured surfaces were followed. The peel test indicated that the crack propagated either through the bulk of the soft lead-tin solder which has 55-60 kgf/cm peel strength or along the interface between the solder and the plated nickel layer which has much lower 22 kgf/cm strength. This study showed that the peel test would be a useful method to quantify the solderability as well as to recognize which is the worst interface or the softest material in a power module with a large soldering area.

Piezoelectric Properties and Phase Transition behaviors of (Bi1/2Na1/2)1- xCaxTiO3Ceramics ((Bi1⁄2Na1⁄2)1-xCaxTiO3 세라믹스의 압전 특성 및 상전이 거동)

  • Lee, Yong-Hyun;Cho, Jeong-Ho;Kim, Byung-Ik;Choi, Duck-Kyun
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.5
    • /
    • pp.263-267
    • /
    • 2008
  • $(Bi_{1/2}Na_{1/2})TiO_3$-based ceramics have been intensively studied as lead-free piezoelectric ceramics. In this study, the piezoelectric properties and phase transition behaviors of BNT based solid solution $(Bi_{0.5}Na_{0.5})_{1-x}Ca_xTiO_3$ ($X=0.01{\sim}0.25$) were investigated. The morphotropic phase boundary(MPB) zone which BNT is transformed from rhombohedral to cubic structure was appeared by adding $CaTiO_3$ with 0.12 mol by the measurement of permittivity and X-ray diffraction. The behavior which ferroelectric BNT with adding $CaTiO_3$ was changed to antiferroelectric and paraelectric state was confirmed by the measurement ofhysterisis loop and depolarization temperature as a function of temperature. As $CaTiO_3$ concentration was increased, the phase transition temperature was decreased. The piezoelectric properties were highest at 0.01 mol of $CaTiO_3$ concentration. The electromechanical coupling factor($K_t$) and mechanical quality factor($Q_m$) were 42% and 254, respectively.

Nondestructive Evaluation and Interfacial Damage Sensing of PVDF embedded Polymer Composites using Micromechanical Techniques and Acoustic Emission (Micromechanical 시험법과 AE를 이용한 PVDF 함침 고분자 복합재료의 계면손상감지능 및 비파괴적 평가 연구)

  • Kong, Jin-Woo;Park, Joung-Man;Kim, Ki-Bok;Yoon, Dong-Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.216-219
    • /
    • 2002
  • Conventional piezoelectric lead-zirconate-titanate (PZT) senor has high sensitivity, but it is very brittle. Recently polymer films such as polyvinylidene fluoride (PVDF) have been used use as a sensor. The advantages of PVDF are the flexibility and mechanical toughness. Simple process and possible several shapes are also additional advantages. PVDF sensor can be directly embedded and attached to a structure. In this study, PVDF sensor was embedded in single glass fiber/epoxy composites whereas PZT sensor with AE was attached to single fiber composites (SFC). Piezoelectric sensor responds to interfacial damage of SFC. The signals measured by PVDF sensor were compared to PZT sensor. PZT sensor detected the signals of fiber fracture, matrix crack, interfacial debonding and even sensor delamination, whereas PVDF sensor only detected fiber fracture signals so far, because PZT sensor is much more sensitive than current PVDF sensor. Wave voltage of fiber fracture measured by PVDF sensor was lower than that of PZT sensor, but the results of fast Fourier transform (FFT) analysis were same. Wave velocity using two PZT sensors was also studied to know the internal and surface damage effect of epoxy specimens.

  • PDF

Field Measurement and Numerical Approach for Lateral Deformation of Retaining Wall (흙막이벽에 발생하는 수평변위의 현장계측과 수치해석적 접근)

  • Do, Jongnam;Wrryu, Woongryeal;An, Yihwan;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.2
    • /
    • pp.61-68
    • /
    • 2010
  • Recently, it is a trend of the underground excavation to become larger and deeper for more effective use of available space and with the advent of new excavation technologies. The ground typically has a complex stratigraphy. The excavation can lead to large deformation in the nearby structures and large earth pressure on the wall. This can lead to serious problem in the stability of the wall. For the retaining wall to be safely constructed, it is important that the stratigraphy and engineering properties of the ground be accurately estimated, based on the excavation plan and appropriate excavation method. This study uses the measured field data and numerical results to characterize the characteristics of the lateral deformation of the retaining wall. A touredof six field data were analysed. SUNEX, a numerical program which uses the elasto-plastic model to represent the soil, was used. It was shown that the measured deformations exceeded the proposed values for shallow excavations. Overall, the maximum lateral deformation was within the proposed value and hence, the walls were analyzed as safe.

Fracture Toughness Measurement of the Semiconductor Encapsulant EMC and It's Application to Package (반도체 봉지수지의 파괴 인성치 측정 및 패키지 적용)

  • 김경섭;신영의;장의구
    • Electrical & Electronic Materials
    • /
    • v.10 no.6
    • /
    • pp.519-527
    • /
    • 1997
  • The micro crack was occurred where the stress concentrated by the thermal stress which was induced during the cooling period after molding process or by the various reliability tests. In order to estimate the possibility of development from inside micro crack to outside fracture, the fracture toughness of EMC should be measured under the various applicable condition. But study was conducted very rarely for the above area. In order to provide a was to decide the fracture resistance of EMC (Epoxy Molding Compound) of plastic package which is produced by using transfer molding method, measuring fracture is studied. The specimens were made with various EMC material. The diverse combination of test conditions, such as different temperature, temperature /humidity conditions, different filler shapes, and post cure treatment, were tried to examine the effects of environmental condition on the fracture toughness. This study proposed a way which could improve the reliability of LOC(Lead On Chip) type package by comparing the measured $J_{IC}$ of EMC and the calculated J-integral value from FEM(Finite Element Method). The measured $K_{IC}$ value of EMC above glass transition temperature dropped sharply as the temperature increased. The $K_{IC}$ was observed to be higher before the post cure treatment than after the post cure treatment. The change of $J_{IC}$ was significant by time change. J-integral was calculated to have maximum value the angle of the direction of fracture at the lead tip was 0 degree in SOJ package and -30 degree in TSOP package. The results FEM simulation were well agreed with the results of measurement within 5% tolerance. The package crack was proved to be affected more by the structure than by the composing material of package. The structure and the composing material are the variables to reduce the package crack.ack.

  • PDF

Evaluation of Lead Oxide Dosimeter for Quality Assurance of Electron Beam in Radiotherapy (방사선치료 전자선의 정도관리를 위한 Lead Oxide 선량계 평가)

  • Yang, Seungwoo;Han, Moojae;Park, Sungkwang
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.1
    • /
    • pp.79-83
    • /
    • 2021
  • In radiation therapy, electron beam is often used in the treatment of superficial lesion. Accurate measurements are required because electron beam interacts with them in the beam path and affects dose measurements. However, no research has been conducted on electron beam quality assurance. in this study, PbO-based dosimeter was fabricated as a basic study for electron beam quality assurance. Thus, the reproducibility and linearity of the energy of 6, 9, and 12 MeV were analyzed to evaluate measurement accuracy and precision. Reproducibility measurements show RSD value of 1.024%, 1.019% and 0.890%, respectively, at 6, 9, and 12 MeV. linearity measurements show 0.9999 R2 at 6, 9, and 12 MeV altogether. Both evaluations show that the PbO dosimeter has very good measurement accuracy and precision with excellent results.