• Title/Summary/Keyword: lead free piezoelectric ceramics

Search Result 169, Processing Time 0.024 seconds

Dielectric and Piezoelectric Properties of (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 Ceramics as a Function of Calcination Temperature (하소온도 변화에 따른 (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 세라믹스의 유전 및 압전 특성)

  • Lee, Kab-Soo;Yoo, Ju-Hyun;Jeong, Woy-Seung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.9
    • /
    • pp.651-655
    • /
    • 2013
  • $(Ba_{0.85}Ca_{0.15})(Ti_{0.9}Zr_{0.1})O_3$ + 0.04 wt% $CeO_2$ lead-free ceramics were synthesized by conventional sintering process and the effect of calcination temperature on microstructure, dielectric and piezoelectric properties were investigated. Improved piezoelectric properties have been observed at $1,125^{\circ}C$ calcination temperature which show the optimal electrical properties, $k_p$~0.457, $d_{33}$~367 pC/N, $Q_m$~158 and $T_c$~$85^{\circ}C$. These results show that the piezoelectric properties can be improved by appropriate calcination temperature.

Dielectric and Piezoelectric Properties of (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 Ceramics as a Function of Sintering Temperature (소결온도 변화에 따른 (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 세라믹스의 유전 및 압전 특성)

  • Lee, Kab-Soo;Yoo, Ju-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.1
    • /
    • pp.22-26
    • /
    • 2014
  • $(Ba_{0.85}Ca_{0.15})(Ti_{0.9}Zr_{0.1})O_3$ + 0.04 wt% $CeO_2$ lead-free ceramics were prepared by conventional oxide-mixed method and the effect of sintering temperature on microstructure, dielectric and piezoelectric properties were investigated. Improved piezoelectric properties have been observed at $1,400^{\circ}C$ sintering temperature which show the optimal electrical properties, $k_p{\sim}0.412$, $d_{33}{\sim}316pC/N$, $Q_m{\sim}144$, ${\varepsilon}_r{\sim}3,345$ and $T_c{\sim}85^{\circ}C$. These results show that the sintering temperature plays an important role in piezoelectric properties.

Piezoelectric and Strain Properties of Lead-free (Bi1/2Na1/2)TiO3-Ba(Cu1/3Nb2/3)O3 Ceramics (비납계 (Bi1/2Na1/2)TiO3-Ba(Cu1/3Nb2/3)O3 세라믹의 압전 및 변위 특성)

  • Ryu, Jung-Ho;Jeong, Dae-Yong
    • Korean Journal of Materials Research
    • /
    • v.21 no.11
    • /
    • pp.628-633
    • /
    • 2011
  • Studies on lead-free piezoelectrics have been attractive as means of meeting environmental requirements. We synthesized lead-free piezoelectric $(Bi_{1/2}Na_{1/2})TiO_3-Ba(Cu_{1/3}Nb_{2/3})O_3$ (BNT-BCN) ceramics, and their dielectric, piezoelectric, and strain behavior were characterized. As BCN with a tetragonal phase was incorporated into the rhombohedral BNT lattice, the lattice constant increased. A small amount of BCN increased the density and dielectric constant forming the complete solid solution with BNT. However, BCN above 10 mol% was precipitated into a separate phase, and which was detected with XRD. In addition, EDX measurement revealed that Cu in BCN was not distributed homogeneously but was accumulated in a certain area. A lower density with a large amount of BCN was attributed to the nonsinterable property of BCN with large tetragonaliy. The dielectric constant vs the temperature change and the strain vs the electric field indicated that the ferroelectric property of BNT was diminished and paraelectric behavior was enhanced with the BCN addition. BNT-7.5BCN showed a 0.11% unimorph strain with a 9.0 kV/mm electric field with little hysteresis.

Enhancement of electromechanical properties in lead-free (1-x)K0.5Na0.5O3-xBaZrO3 piezoceramics

  • Duong, Trang An;Nguyen, Hoang Thien Khoi;Lee, Sang-Sub;Ahn, Chang Won;Kim, Byeong Woo;Lee, Jae‒Shin;Han, Hyoung‒Su
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.408-414
    • /
    • 2021
  • This study analyzes the phase transition behavior and electrical properties of lead-free (1-x)K0.5Na0.5NbO3-xBaZrO3 (KNN-100xBZ) piezoelectric ceramics. The stabilized crystal structures in BaZrO3-modified KNN ceramics is clarified to be pseudocubic. The polymorphic phase transition from the orthorhombic to pseudocubic phases can be observed with KNN-6BZ ceramics considering the optimized piezoelectric constant (d33). Electromechanical strain behaviors are discussed. Accordingly, the enhancement of strain value at x = 0.08 (composition) may originate from the coexistence of ferroelectric domains and polar nanoregions. A schematic of domains for KNN, KNN-8BZ, and KNN-15BZ ceramics has been proposed to describe the relationship between the stabilized relaxor and changes in electrical properties.

Piezoelectric Properties of Lead-Free (K0.5Na0.5)NbO3 Ceramics Added with ZnO and MnO2 (ZnO와 MnO2를 동시에 첨가한 (K0.5Na0.5)NbO3 세라믹스의 압전 특성에 대한 연구)

  • Hong, Young Hwan;Park, Young-Seok;Jeong, Gwang-Hwi;Cho, Sung Youl;Lee, Jae-Shin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.4
    • /
    • pp.210-214
    • /
    • 2016
  • We investigated the sintering behavior and piezoelectric properties of lead-free $(K_{0.5}Na_{0.5})NbO_3$ ceramics co-doped with excess 0.01 mol ZnO and x mol $MnO_2$, where x was varied from 0 to 0.03. Excess $MnO_2$ addition was found to retard the grain growth and densification during sintering. However, 0.005 mol $MnO_2$ addition improved the piezoelectric properties of 0.01 mol ZnO added $(K_{0.5}Na_{0.5})NbO_3$ ceramics. The planar mode piezoelectric coupling coefficient, electromechanical quality factor, and piezoelectric constant $d_{33}$ of 0.01 mol ZnO and 0.005 mol $MnO_2$ added specimen were 0.40, 304, and 214 pC/N, respectively.

Electrical and Structural Properties of Lead Free 0.98 (Na0.44K0.52)Nb0.84O3-0.02Li0.04 (Sb0.06Ta0.1)O3-0.5 mol%CuO Ceramics (비납계 0.98 (Na0.44K0.52)Nb0.84O3-0.02Li0.04 (Sb0.06Ta0.1)O3-0.5 mol%CuO 세라믹스의 전기적, 구조적 특성)

  • Lee, Seung-Hwan;Nam, Sung-Pill;Lee, Sung-Gap;Lee, Young-Hie
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.2
    • /
    • pp.116-120
    • /
    • 2011
  • The 0.98 ($Na_{0.44}K_{0.52})Nb_{0.84}O_3-0.02Li_{0.04}$ ($Sb_{0.06}Ta_{0.1})O_3-0.5$ mol%CuO ceramics have been fabircated by ordinary sintering technique and the effect of various calcination method on the electrical propertis and microstructure have been studied. It was observed that the various calcination method influenced the elelctrical properties and structural properties of the 0.98NKN-0.02LST-0.5 mol%CuO ceramics with the optimum piezoelectric constant ($d_{33}$) and electromechanical coupling factor ($k_p$) at room temperature of about $155{\rho}C/N$ and 0.349, respectively, from 0.98NKN-0.02LST-0.5 mol%CuO ceramics sample. The curie temperature ($T_c$) of this ceramic was found at $440^{\circ}C$. The 0.98NKN-0.02LST-0.5 mol%CuO ceramics are a promising lead-free piezoelectric ceramics.

Piezoelectric Characteristics of Lead-Free 0.74(Bi0.5Na0.5)TiO3-0.26SrTiO3 Ceramics According to Calcination Temperature (무연 0.74(Bi0.5Na0.5)TiO3-0.26SrTiO3 압전 세라믹스의 하소온도 변화에 따른 전기적 특성 변화)

  • Kim, Seong-Hyun;Lee, Sang-Hun;Han, Hyoung-Su;Lee, Jae-Shin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.1
    • /
    • pp.35-39
    • /
    • 2019
  • In this study, we investigated the optimum calcination temperature of lead-free $0.74(Bi_{0.5}Na_{0.5})TiO_3-0.26SrTiO_3$(BNST) piezoelectric ceramics by analyzing the crystal structure, dielectric properties, and electric field-induced strain behavior. BNST ceramics prepared by conventional solid-state reaction methods at various calcination temperatures according to the industrial standard. All samples of BNST ceramics were subsequently sintered at $1,175^{\circ}C$ for 2 h. Crystal structure classification of the ceramics showed a single perovskite phase, with no second phase detectable for the samples calcined at $750^{\circ}C$ or higher. BNST samples calcined at $850^{\circ}C$ exhibited the most optimal values for itsand the common physical parameters of $density=5.518g/cm^3$, ${\varepsilon}=1,871.837$, $tan{\delta}=0.047$, and ${d_{33}}^*=874pm/V$.

The Piezoelectric Properties of (Na0.5K0.5)NbO3-K5.4Cu1.3Ta10O29 Ceramics with Various K5.4Cu1.3Ta10O29 Doping and Sintering Temperatures

  • Yoon, Jung Rag;Lee, Chang-Bae;Lee, Serk Won;Lee, Heun-Young
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.6
    • /
    • pp.283-286
    • /
    • 2012
  • (1-X)$(Na_{0.5}K_{0.5})NbO_3-XK_{5.4}Cu_{1.3}Ta_{10}O_{29}$ (NKN-KCT) lead-free piezoelectric ceramics have been synthesized by the conventional solid state sintering method, and their sinterability and piezoelectric properties were investigated. Typically, this material is sintered between 1,025 and $1,100^{\circ}C$ for 2 hours to achieve the required densification. Crystalline structures and Microstructures were analyzed by X-ray diffraction and scanning electron microscope. The density, dielectric constant (${\varepsilon}_r$), piezoelectric constant $d_{33}$, electromechanical coupling factor $k_p$ and mechanical quality factor $Q_m$ value of the NKN ceramics depended upon the KCT content and the sintering temperature. In particular, the KCT addition to NKN greatly improved the mechanical quality factor $Q_m$ value. The ceramic with X = 1.0 mol% sintered at $1,050^{\circ}C$ exhibited optimum properties (${\varepsilon}_r$=246, $d_{33}$=95, $k_p$=0.38 and $Q_m$=1,826). These results indicate that the ceramic is a promising candidate material for applications in lead free piezoelectric transformer and filter materials.

Dielectric and Piezoelectric Properties of Microwave Sintered BNT-ST Ceramics (마이크로파 소성법으로 제조한 BNT-ST 세라믹스의 유전 및 압전 특성)

  • Lee, Sang-Hun;Kim, Seong-Hyun;Erkinov, Farrukh;Nguyen, Hoang Thien Khoi;Duong, Trang An;Han, Hyoung-Su;Lee, Jae-Shin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.1
    • /
    • pp.37-44
    • /
    • 2020
  • This study investigated the microstructure and piezoelectric properties of lead-free 0.74(Bi1/2Na1/2)TiO3-0.26SrTiO3 (BNST26) piezoelectric ceramics sintered using a microwave furnace. For comparison, specimens were also prepared using a conventional furnace sintering (CFS). Average grain sizes of 2.4 ㎛ and 3.2 ㎛ were obtained in the sample sintered at 1,100℃ for 5 min using microwave sintering (MWS) and at 1,175℃ for 2 h using CFS, respectively. To quantify the changes in the microstructures and electrical properties according to the sintering conditions, the polarization hysteresis, bipolar and unipolar strain curves, and temperature dependence of permittivity were evaluated. As a result, it was determined that the Pmax (maximum polarization), Pr (remanent polarization) and Smax (maximum strain) values tend to increase with the average grain size. Based on these results, it is concluded that the MWS method can produce lead-free ceramics with superior performance in a relatively short time compared to the conventional CFS method.

Low Temperature Sintering of BNKT Lead-Free Piezoelectric Ceramics Using CuO-Coated Na0.5Bi4.5Ti4O15 Templates (산화구리가 피복된 Na0.5Bi4.5Ti4O15 틀입자를 이용한 BNKT 무연 압전 세라믹스의 저온소성 연구)

  • Jeong, Gwang-Hwi;Lee, Sang-Seop;Ahn, Chang Won;Han, Hyoung Su;Lee, Jae-Shin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.5
    • /
    • pp.337-343
    • /
    • 2020
  • This study investigated the low temperature sintering with various templates of Bi-based lead-free piezoelectric ceramics. The effects of using CuO-coated Na0.5Bi4.5Ti4O15 templates on the sintering behavior as well as the dielectric, ferroelectric, and piezoelectric properties of Bi1/2(Na0.78K0.22)1/2TiO3 (BNKT) ceramics have been examined. In comparison with the specimens sintered with the Na0.5Bi4.5Ti4O15 templates without CuO coating, those sintered with the CuO-coated Na0.5Bi4.5Ti4O15 templates showed larger template sizes as well as a larger electric field induced strain (Smax/Emax) of 422 pm/V after sintering at temperatures as low as 975℃. These results are promising for low-cost multilayer ceramic actuator applications.