Browse > Article
http://dx.doi.org/10.4313/JKEM.2020.33.1.37

Dielectric and Piezoelectric Properties of Microwave Sintered BNT-ST Ceramics  

Lee, Sang-Hun (School of Materials Science and Engineering, University of Ulsan)
Kim, Seong-Hyun (School of Materials Science and Engineering, University of Ulsan)
Erkinov, Farrukh (School of Materials Science and Engineering, University of Ulsan)
Nguyen, Hoang Thien Khoi (School of Materials Science and Engineering, University of Ulsan)
Duong, Trang An (School of Materials Science and Engineering, University of Ulsan)
Han, Hyoung-Su (School of Materials Science and Engineering, University of Ulsan)
Lee, Jae-Shin (School of Materials Science and Engineering, University of Ulsan)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.33, no.1, 2020 , pp. 37-44 More about this Journal
Abstract
This study investigated the microstructure and piezoelectric properties of lead-free 0.74(Bi1/2Na1/2)TiO3-0.26SrTiO3 (BNST26) piezoelectric ceramics sintered using a microwave furnace. For comparison, specimens were also prepared using a conventional furnace sintering (CFS). Average grain sizes of 2.4 ㎛ and 3.2 ㎛ were obtained in the sample sintered at 1,100℃ for 5 min using microwave sintering (MWS) and at 1,175℃ for 2 h using CFS, respectively. To quantify the changes in the microstructures and electrical properties according to the sintering conditions, the polarization hysteresis, bipolar and unipolar strain curves, and temperature dependence of permittivity were evaluated. As a result, it was determined that the Pmax (maximum polarization), Pr (remanent polarization) and Smax (maximum strain) values tend to increase with the average grain size. Based on these results, it is concluded that the MWS method can produce lead-free ceramics with superior performance in a relatively short time compared to the conventional CFS method.
Keywords
Piezoelectric; Lead-free ceramics; Sintering condition; Conventional furnace sintering; Microwave sintering;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Rodel and J. F. Li, MRS Bull., 43, 576 (2018). [DOI: https://doi.org/10.1557/mrs.2018.181]   DOI
2 A. J. Bell and O. Deubzer, MRS Bull., 43, 581 (2018). [DOI:https://doi.org/10.1557/mrs.2018.154]   DOI
3 S. T. Zhang, A. B. Kounga, E. Aulbach, H. Ehrenberg, and J. Rodel, Appl. Phys. Lett., 91, 112906 (2007). [DOI: https://doi.org/10.1063/1.2783200]   DOI
4 C. W. Ahn, C. H. Hong, B. Y. Choi, H. P. Kim, H. S. Han, Y. Hwang, W. Jo, K. Wang, J. F. Li, J. S. Lee, and I. W. Kim, J. Korean Phys. Soc., 68, 1481 (2016). [DOI: https://doi.org/10.3938/jkps.68.1481]   DOI
5 T. Takenaka, K. I. Maruyama, and K. Sakata, Jpn. J. Appl. Phys., 30, 2236 (1991). [DOI: https://doi.org/10.1143/JJAP.30.2236]   DOI
6 X. Wang, H.L.W. Chan, and C. L. Choy, Solid State Commun., 125, 395 (2003). [DOI: https://doi.org/10.1016/S0038-1098(02)00816-5]   DOI
7 H. Nagata and T. Takenaka, J. Eur. Ceram. Soc., 21, 1299 (2001). [DOI: https://doi.org/10.1016/S0955-2219(01)00005-X]   DOI
8 Y. Watanabe, Y. Hiruma, H. Nagata, and T. Takenaka, Ceram. Int., 34, 761 (2008). [DOI: https://doi.org/10.1016/j.ceramint. 2007.09.023]   DOI
9 B. Parija, S. K. Rout, L. S. Cavalcante, A. Z. Simoes, S. Panigrahi, E. Longo, and N. C. Batista, Appl. Phys. A, 109, 715 (2012). [DOI: https://doi.org/10.1007/s00339-012-7105-1]   DOI
10 D. Lin, K. W. Kwok, and H.L.W. Chan, J. Alloys Compd., 481, 310 (2009). [DOI: https://doi.org/10.1016/j.jallcom.2009.02.120]   DOI
11 W. Krauss, D. Schutz, F. A. Mautner, A. Feteira, and K. Reichmann, J. Eur. Ceram. Soc., 30, 1827 (2010). [DOI: https://doi.org/10.1016/j.jeurceramsoc.2010.02.001]   DOI
12 T. A. Duong, H. S. Han, Y. H. Hong, Y. S. Park, H.T.K. Nguyen, T. H. Dinh, and J. S. Lee, J. Electroceram., 41, 73 (2018). [DOI: https://doi.org/10.1007/s10832-018-0161-y]   DOI
13 M. Oghbaei and O. Mirzaee, J. Alloys Compd., 494, 175 (2010). [DOI: https://doi.org/10.1016/j.jallcom.2010.01.068]   DOI
14 J. K. Kang, T. H. Dinh, C. H. Lee, H. S. Han, J. S. Lee, and V.D.N. Tran, Trans. Electr. Electron. Mater., 18, 1 (2017). [DOI: https://doi.org/10.4313/TEEM.2017.18.1.1]   DOI
15 H. Takahashi, Y. Numamoto, J. Tani, K. Matsuta, J. Qiu, and S. Tsurekawa, Jpn. J. Appl. Phys., 45, L30 (2006). [DOI:https://doi.org/10.1143/JJAP.45.L30]   DOI
16 T. Takenaka, M. Hirose and, K. Miyabe, U.S. Patent., 6, 474 (1999).
17 M. Feizpour, H. B. Bafrooei, R. Hayati, and T. Ebadzadeh, Ceram. Int., 40, 871 (2014). [DOI: https://doi.org/10.1016/j.ceramint.2013.06.081]   DOI
18 L. Liu, H. Fan, S. Ke, and X. Chen, J. Alloys Compd., 458, 504 (2008). [DOI: https://doi.org/10.1016/j.jallcom.2007.04.037]   DOI
19 M. V. Ramana, S. R. Kiran, N. R. Reddy, K.V.S. Kumar, V.R.K. Murthy, and B. S. Murty, Mater. Chem. Phys., 126, 295 (2011). [DOI: https://doi.org/10.1016/j.matchemphys.2010.11.023]   DOI
20 H. Ghayour and M. Abdellahi, Powder Technol., 292, 84 (2016). [DOI: https://doi.org/10.1016/j.powtec.2016.01.030]   DOI
21 X. G. Tang and H.L.W. Chan, J. Appl. Phys., 97, 034109 (2005). [DOI: https://doi.org/10.1063/1.1849817]   DOI
22 R. Angalakurthi and K.C.J. Raju, Mater. Sci. Eng., 18, 092028 (2011). [DOI: https://doi.org/10.1088/1757-899X/18/9/092028]