DOI QR코드

DOI QR Code

Enhancement of electromechanical properties in lead-free (1-x)K0.5Na0.5O3-xBaZrO3 piezoceramics

  • Duong, Trang An (School of Materials Science and Engineering, University of Ulsan) ;
  • Nguyen, Hoang Thien Khoi (School of Materials Science and Engineering, University of Ulsan) ;
  • Lee, Sang-Sub (School of Materials Science and Engineering, University of Ulsan) ;
  • Ahn, Chang Won (Department of Physics and EHSRC, University of Ulsan) ;
  • Kim, Byeong Woo (Department of Electrical Engineering, University of Ulsan) ;
  • Lee, Jae‒Shin (School of Materials Science and Engineering, University of Ulsan) ;
  • Han, Hyoung‒Su (School of Materials Science and Engineering, University of Ulsan)
  • Received : 2021.10.15
  • Accepted : 2021.11.30
  • Published : 2021.11.30

Abstract

This study analyzes the phase transition behavior and electrical properties of lead-free (1-x)K0.5Na0.5NbO3-xBaZrO3 (KNN-100xBZ) piezoelectric ceramics. The stabilized crystal structures in BaZrO3-modified KNN ceramics is clarified to be pseudocubic. The polymorphic phase transition from the orthorhombic to pseudocubic phases can be observed with KNN-6BZ ceramics considering the optimized piezoelectric constant (d33). Electromechanical strain behaviors are discussed. Accordingly, the enhancement of strain value at x = 0.08 (composition) may originate from the coexistence of ferroelectric domains and polar nanoregions. A schematic of domains for KNN, KNN-8BZ, and KNN-15BZ ceramics has been proposed to describe the relationship between the stabilized relaxor and changes in electrical properties.

Keywords

Acknowledgement

This study was supported by the National Research Foundation (NRF) of the Republic of Korea (Grant Nos. 2020R1C1C1007375 and 2016R1D1A3B01008169). CW Ahn acknowledges financial support from the Basic Science Research Program through the National Research Foundation (NRF) of the Republic of Korea (Grant No. 2021R1I1A1A01057086).

References

  1. M. S. Islam and J. Beamish, "Piezoelectric creep in LiNbO3, PMN-PT and PZT-5A at low temperatures", J. Appl. Phys., Vol. 126, No. 20, pp. 204101(1)-204101(12), 2019. https://doi.org/10.1063/1.5119351
  2. A. Kuma, A. K. Kalyani, R. Ranjan, K. C. J. Raju, J. Ryu, N. Park, and A. R. James, "Evidence of monoclinic phase and its variation with temperature at morphotropic phase boundary of PLZT ceramics", J. Alloys Compd., Vol. 816, pp. 152613(1)-152613(10), 2020.
  3. A. J. Bell and O. Deubzer, "Lead-free piezoelectrics-The environmental and regulatory issues", MRS Bull., Vol. 43, No. 8, pp. 581-587, 2018. https://doi.org/10.1557/mrs.2018.154
  4. C. H. Hong, H. P. Kim, B. Y. Choi, H. S. Han, J. S. Son, C. W. Ahn, and W. Jo, "Lead-free piezoceramics - Where to move on?", J. Mater., Vol. 2, No. 1, pp. 1-24, 2016. https://doi.org/10.1016/j.jmat.2015.12.002
  5. M. Arshad, H. Du, M. Javed, A. Maqsood, I. Ashraf, H. Sussain, W. Ma, and H. Ran, "Fabrication, structure, and frequency-dependent electrical and dielectric properties of Sr-doped BaTiO3 ceramics", Ceram. Int., Vol. 46, No. 2, pp. 2238-2246, 2020. https://doi.org/10.1016/j.ceramint.2019.09.208
  6. T. A. Duong, H. S. Han, Y. H. Hong, Y. S. Park, H. T. K. Nguyen, T. H. Dinh, and J. S. Lee, "Dielectric and piezoelectric properties of Bi1/2Na1/2TiO3-SrTiO3 lead-free ceramics", J. Electroceram., Vol. 41, No. 1, pp. 73-79, 2018. https://doi.org/10.1007/s10832-018-0161-y
  7. J. Wu, D. Xiao, and J. Zhu, "Potassium-sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries", Chem. Rev., Vol. 115, No. 7, pp. 2559-2595, 2015. https://doi.org/10.1021/cr5006809
  8. J. F. Li, K. Wang, F. Y. Zhu, L. Q. Cheng, F. Z. Yao, and D. J. Green, "(K,Na)NbO3-based lead-free piezoceramics: fundamental aspects, processing technologies, and remaining challenges", J. Am. Ceram. Soc., Vol. 96, No. 12, pp. 3677-3696, 2013. https://doi.org/10.1111/jace.12715
  9. I. Izzuddin, M. H. Hj. Jumal, Z. Zainuddin, and N. H. Janil, "Piezoelectric enhancements in K0.5Na0.5NbO3-based ceramics via structural evolutions", Ceram. Int., Vol. 45, No. 14, pp. 17204-17209, 2019. https://doi.org/10.1016/j.ceramint.2019.05.275
  10. X. Lv, J. Wu, and X. Zhang, "A new concept to enhance piezoelectricity and temperature stability in KNN ceramics", Chem. Eng. J., Vol. 402, pp. 126215(1)-126215(12), 2020. https://doi.org/10.1016/j.cej.2020.126215
  11. W. Yang, P. Li, S. Wu, F. Li, B. Shen, and J. Zhai, "Coexistence of excellent piezoelectric performance and thermal stability in KNN-based lead-free piezoelectric ceramics", Ceram. Int., Vol. 46, No. 2, pp. 1390-1395, 2020. https://doi.org/10.1016/j.ceramint.2019.09.102
  12. Y. Chang, S. Poterala, Z. Yang, and G. L. Messing, "Enhanced electromechanical properties and temperature stability of textured (K0.5Na0.5)NbO3-based piezoelectric ceramics", J. Am. Ceram. Soc., Vol. 94, No. 8, pp. 2494-2498, 2011. https://doi.org/10.1111/j.1551-2916.2011.04393.x
  13. H. Zhang, Y. Zhu, P. Fan, M. A. Marwat, W. Ma, K. Liu, H. Liu, B. Xie, K. Wang, and J. Koruza, "Temperature-insensitive electric-field-induced strain and enhanced piezoelectric properties of <001> textured (K,Na)NbO3-based lead-free piezoceramics", Acta Mater., Vol. 156, pp. 389-398, 2018. https://doi.org/10.1016/j.actamat.2018.07.005
  14. S. Zhang, R. Xia, and T. R. Shrout, "Modified (K0.5Na0.5)NbO3 based lead-free piezoelectrics with broad temperature usage range", Appl. Phys. Lett., Vol. 91, No. 13, pp. 132913(1)-132913(3), 2007. https://doi.org/10.1063/1.2794400
  15. L. Jiang, Y. Li, L. Xie, J. Wu, Q. Chen, W. Zhang, D. Xiao, and J. Zhu, "Enhanced electrical properties and good thermal stability in K0.48Na0.52NbO3-LiNbO3-BiAlO3 lead-free piezoceramics", J. Mater. Sci.: Mater. Electron., Vol. 28, No. 12, pp. 8500-8509, 2017. https://doi.org/10.1007/s10854-017-6572-8
  16. H. Shi, J. Chen, R. Wang, and S. Dong, "Full set of material constants of (Na0.5K0.5)NbO3-BaZrO3-(Bi0.5Li0.5)TiO3 lead-free piezoelectric ceramics at the morphotropic phase boundary", J. Alloys Compd., Vol. 655, pp. 290-295, 2016. https://doi.org/10.1016/j.jallcom.2015.09.161
  17. Y. Guo, K. I. Kakimoto, and H. Ohsato, "Dielectric and piezoelectric properties of lead-free (Na0.5K0.5)NbO3-SrTiO3 ceramics", Solid State Commun., Vol. 129, No. 5, pp. 279-284, 2004. https://doi.org/10.1016/j.ssc.2003.10.026
  18. Y. Guo, K. I. Kakimoto, and H. Ohsato, "(Na0.5K0.5)NbO3-LiTaO3 lead-free piezoelectric ceramics", Mater. Lett., Vol. 59, No. 2-3, pp. 241-244, 2005. https://doi.org/10.1016/j.matlet.2004.07.057
  19. R. Wang, H. Bando, and M. Itoh, "Universality in phase diagram of (K,Na)NbO3-MTiO3 solid solutions", Appl. Phys. Lett., Vol. 95, No. 9, pp. 092905(1)-092905(3), 2009. https://doi.org/10.1063/1.3224196
  20. H. Du, W. Zhou, F. Luo, D. Zhu, S. Qu, Y. Li, and Z. Pei, "Design and electrical properties' investigation of (K0.5Na0.5)NbO3-BiMeO3 lead-free piezoelectric ceramics", J. Appl. Phys., Vol. 104, No. 3, pp. 034104(1)-034104(7), 2008. https://doi.org/10.1063/1.2964100
  21. R. Wang, H. Bando, T. Katsumata, Y. Inaguma, H. Taniguchi, and M. Itoh, "Tuning the orthorhombic-rhombohedral phase transition temperature in sodium potassium niobate by incorporating barium zirconate", Phys. Status. Solidi Rapid Res. Lett., Vol. 3, No. 5, pp. 142-144, 2009. https://doi.org/10.1002/pssr.200903090
  22. R. Wang, H. Bando, M. Kidate, Y. Nishihara, and M. Itoh, "Effects of A-Site Ions on the Phase Transition Temperatures and Dielectric Properties of (1-x)(Na0.5K0.5)NbO3-xAZrO3 Solid Solutions", Jpn. J. Appl. Phys., Vol. 50, No. 9S2, pp. 09ND10(1)-09ND10(5), 2011.
  23. Y. M. Li, Z. Y. Shen, F. Wu, T. Z. Pan, Z. M. Wang, and Z. G. Xiao, "Enhancement of piezoelectric properties and temperature stability by forming an MPB in KNN-based lead-free ceramics", J. Mater. Sci. Mater. Electron., Vol. 25, No. 2, pp. 1028-1032, 2013.
  24. T. A. Duong, F. Erkinov, H. T. K. Nguyen, C. W. Ahn, B. W. Kim, H. S. Han, and J. S. Lee, "Temperature insensitive piezoelectric properties on the morphotropic phase boundary of BaZrO3-modified lead-free KNN-BLT ceramics", J. Electroceram., Vol. 45, No. 4, pp. 164-171, 2020. https://doi.org/10.1007/s10832-021-00236-9
  25. V. Bobnar, J. Holc, M. Hrovat, and M. Kosec, "Relaxor-like dielectric dynamics in the lead-free K0.5Na0.5NbO3-SrZrO3 ceramic system", J. Appl. Phys., Vol. 101, No. 7, pp. 074103(1)-074103(4), 2007. https://doi.org/10.1063/1.2717090
  26. Z. Liu, H. Fan, Y. Zhao, G. Dong, and W. Jo, "Optical and Tunable Dielectric Properties of K0.5Na0.5NbO3-SrTiO3 Ceramics", J. Am. Ceram. Soc., Vol. 99, No. 1, pp. 146-151, 2016. https://doi.org/10.1111/jace.13864
  27. U. Nuraini, N.Triyuliana M. Mashuri, and S. Suasmoro, "Characterization of relaxor ferroelectrics from BiFeO3 doped (K0.5Na0.5)NbO3 systems", Mater. Sci. Eng., Vol. 496, No. 1, pp. 012043(1)-012043(6), 2019.
  28. J. Zhou, G. Xiang, J. Shen, H. Zhang, Z. Xu, H. Li, P. Ma, and W. Chen, "Composition-insensitive enhanced piezoelectric properties in SrZrO3 modified (K, Na)NbO3-based lead-free ceramics", J. Electroceram., Vol. 44, No. 1, pp. 95-103, 2019. https://doi.org/10.1007/s10832-019-00195-2
  29. J. Du, Z. Xu, R. Chu, J. Hao, W. Li, and P. Zheng, "Enhanced electrical properties of lead-free (1-x) (K0.44Na0.52Li0.04)(Nb0.91Ta0.05Sb0.04)O3-xSrZrO3 ceramics", J. Mater. Sci.: Mater. Electron., Vol. 27, No. 6, pp. 6535-6541, 2016. https://doi.org/10.1007/s10854-016-4597-z
  30. W. Liang, W. Wu, D. Xiao, J. Zhu, and J. Wu, "Construction of new morphotropic phase boundary in 0.94(K0.4-xNa0.6BaxNb1-xZrx)O3-0.06LiSbO3 lead-free piezoelectric ceramics", J. Mater. Sci., Vol. 46, No. 21, pp. 6871-6876, 2011. https://doi.org/10.1007/s10853-011-5650-1
  31. B. Zhang, J. Wu, X. Wang, X. Cheng, J. Zhu, and D. Xiao, "Rhombohedral-orthorhombic phase coexistence and electrical properties of Ta and BaZrO3 co-modified (K, Na)NbO3 lead-free ceramics", Curr. Appl. Phys., Vol. 13, No. 8, pp. 1647-1650, 2013. https://doi.org/10.1016/j.cap.2013.06.010
  32. J. Hao, Z. Xu, R. Chu, W. Li, and J. Du, "Effect of (Bi0.5K0.5)TiO3 on the electrical properties, thermal and fatigue behavior of (K0.5Na0.5)NbO3-based lead-free piezoelectrics", J. Mater. Res., Vol. 30, No. 13, pp. 2018-2029, 2015. https://doi.org/10.1557/jmr.2015.169
  33. K. Ramam and M. Lopez, "Barium modified lead lanthanum strontium zirconium niobium titanate for dielectric and piezoelectric properties", J. Eur. Ceram. Soc., Vol. 27, No. 10, pp. 3141-3147, 2007. https://doi.org/10.1016/j.jeurceramsoc.2007.01.001
  34. R. Guo, L. E. Cross, S. E. Park, B. Noheda, D. E. Cox, and G. Shirane, "Origin of the High Piezoelectric Response in PbZr1-xTixO3", Phys. Rev. Lett., Vol. 84, No. 23, pp. 5423-5426, 2000. https://doi.org/10.1103/PhysRevLett.84.5423
  35. J. Fu, R. Zuo, S. C. Wu, J. Z. Jiang, L. Li, T. Y. Yang, X. Wang, and L. Li, "Electric field induced intermediate phase and polarization rotation path in alkaline niobate based piezoceramics close to the rhombohedral and tetragonal phase boundary", Appl. Phys. Lett., Vol. 100, No. 12, pp. 122902(1)-122902(5), 2012. https://doi.org/10.1063/1.3696071
  36. J. Zhang, Z. Liu, T. Zhang, Y. Liu, and Y. Lyu, "High strain response and low hysteresis in BaZrO3-modified KNN-based lead-free relaxor ceramics", J. Mater. Sci. Mater. Electron., Vol. 32, pp. 16715-16725, 2021. https://doi.org/10.1007/s10854-021-06229-2
  37. H. C. Thong, C. Zhao, Z. Zhou, C. F. Wu, Y. X. Liu, Z. Z. Du, J. F. Li, W. Gong, and K. Wang, "Technology transfer of lead-free (K, Na)NbO3-based piezoelectric ceramics", Mater. Today, Vol. 29, pp. 37-48, 2019. https://doi.org/10.1016/j.mattod.2019.04.016
  38. H. Yu and Z. G. Ye, "Dielectric properties and relaxor behavior of a new (1-x)BaTiO3-xBiAlO3 solid solution", J. Appl. Phys., Vol. 103, Vol. 3, pp. 034114(1)-034114(5), 2008. https://doi.org/10.1063/1.2838479
  39. A. A. Bokov and Z. G. Ye, "Recent progress in relaxor ferroelectrics with perovskite structure", J. Mater. Sci., Vol. 41, No. 1, pp. 31-52, 2006. https://doi.org/10.1007/s10853-005-5915-7
  40. A. A. Bokov, B. J. Rodriguez, X. Zhao, J. H. Ko, S. Jesse, X. Long, W. Qu, T. H. Kim, J. D. Budai, A. N. Morozovska, and S. Kojima, "Compositional disorder, polar nanoregions and dipole dynamics in Pb(Mg1/3Nb2/3)O3-based relaxor ferroelectrics", Zeitschrift fur Kristallographie, Vol. 226, pp. 99-107, 2011. https://doi.org/10.1524/zkri.2011.1299
  41. F. Li, M. J. Cabral, B. Xu, Z. Cheng, E. C. Dickey, J. M. L.Beau, J. Wang, J. Luo, S. Taylor, W. Hackenberger, L. Bellaiche, Z. Xu, L. Q. Chen, T. R. Shrout, and S. Zhang, "Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals", Science, Vol. 364, No. 6437, pp. 264-268, 2019. https://doi.org/10.1126/science.aaw2781
  42. Q. M. Zhang, W. Y. Pan, S. J. Jang, and L. E. Cross, "Domain wall excitations and their contributions to the weak?signal response of doped lead zirconate titanate ceramics", J. Appl. Phys., Vol. 64, No. 11, pp. 6445-6451, 1988. https://doi.org/10.1063/1.342059
  43. K. Wang, F. Z. Yao, W. Jo, D. Gobeljic, V. V. Shvartsman, D. C. Lupascu, J. F. Li, and J. Rodel, "Temperature-Insensitive (K,Na)NbO3-Based Lead-Free Piezoactuator Ceramics", Advanced Functional Materials, Vol. 23, No. 33, pp. 4079-4086, 2013. https://doi.org/10.1002/adfm.201203754
  44. H. S. Han, W. Jo, J. K. Kang, C. W. Ahn, I. W. Kim, K. K. Ahn, and J. S. Lee, "Incipient piezoelectrics and electrostriction behavior in Sn-doped Bi1/2(Na0.82K0.18)1/2TiO3 lead-free ceramics", J. Appl. Phys., Vol. 113, No. 15, pp. 154102(1)-154102(6), 2013. https://doi.org/10.1063/1.4801893
  45. X. X. Sun, J. Zhang, X. Lv, X. X. Zhang, Y. Liu, F. Li, and J. Wu, "Understanding the piezoelectricity of high-performance potassium sodium niobate ceramics from diffused multi-phase coexistence and domain feature", J. Mater. Chem. A, Vol. 7, No. 28, pp. 16803-16811, 2019. https://doi.org/10.1039/c9ta03799c