• Title/Summary/Keyword: layer interface

Search Result 2,223, Processing Time 0.035 seconds

Effect of Interface Roughness on Magnetoresistance of[Ni/Mn] Superlattice-Based Spin Valves

  • J.R. Rhee;Kim, M.Y.;J.Y. Hwang;Lee, S.S.
    • Journal of Magnetics
    • /
    • v.6 no.4
    • /
    • pp.145-147
    • /
    • 2001
  • The effect of interface roughness between [Ni/Mn] superlattice and pinned NiFe layer on magnetoresistance (MR) of [Ni/Mn] superlattice-based spin valve films was investigated. Antiferromagnetic phase structure and interface roughness of [Ni/Mn] superlattice spin valve films were compared in the as-deposited and the annealed samples at 240$\^{C}$, respectively. Surface morphology of spin valves was substantially flattened due to the formation of the antiferromatic NiMn phase. In case of Co insertion between Cu and NiFe, the interlace roughness and MR ratio in the annealed [NiMn] superlattice and pinned NiFe/Co layer increased more than those in the annealed [Ni/Mn] superlattice and pinned NiFe layers respectively.

  • PDF

Mixing effect on Properties of NTC Thermistor in Mn-Co-0 System (Mn-Co-0계 NTC 써 미스터의 물성에 미치는 혼합의 영향)

  • 윤상식;김경식;윤상옥
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.459-462
    • /
    • 2001
  • Interface effects on properties of NTC thermistors having Mn-Co-O spinel crystal structure system are analyzed by a mixing rule in case of mixed types and layered types between CuO and Al$_2$O$_3$ added compounds. With adding CuO and Al$_2$O$_3$, The compounds form completely solid solution and their resistance and B constant are changed due to the variation of conduction electrons by their ionic substitutions. The properties of mixed NTC thermistors are depended on the logarithmic mixing rule by a dispersed phase and they show slightly lower values due to the lattice mixing affect in compared with calculated values. The resistance of layered NTC thermistors is depended upon the series mixing rule containing the value of an interface layer and effected by the variation of its thickness, and it is changed rapidly to the logarithmic mixing rule by the connection between two layers with increasing the interface layer

  • PDF

Injection of an Intermediate Fluid into a Rotating Cylindrical Container Filled with Two-layered Fluid

  • Na, Jung-Yul;Hwang, Byong-Jun
    • Journal of the korean society of oceanography
    • /
    • v.31 no.4
    • /
    • pp.173-182
    • /
    • 1996
  • A median-density fluid was injected into the upper layer of a two-layered fluid in a rotating cylindrical container. Several sets of the top and bottom boundary configurations were employed and the flow pattern of each layer including the injected fluid was observed to determine the factors that affect the path of the injected intermediate fluid. The axisymmetric path of the intermediate fluid when the upper layer had a free surface, changed into the asymmetric path with bulged-shape radial spreading whenever either the upper layer or the lower layer had ${\beta}$-effect. The internal Fronds number that controls the shape of the interface turned out to be the most important parameter that determines the radial spreading in terms of location and strength. When the upper and lower layer had the ${\beta}$-effect, convective overturning produced anticyclonic vortices at the frontal edge of the intermediate fluid, and that could enhance the vertical mixing of different density fluids. The intermediate fluid did not produce any topographic effect on the upper-layer motion during its spreading over the interface, since its thickness was very small. However, its anticyclonic motion within the bulged-shape produced a cyclonic motion in the lower layer just beneath the bulge.

  • PDF

Technology Trend of surface Wettability Control Using Layer-by-Layer Assembly Technique (다층박막법을 이용한 표면 젖음성 제어 기술 동향)

  • Sung, Chunghyun
    • Journal of Adhesion and Interface
    • /
    • v.18 no.4
    • /
    • pp.171-178
    • /
    • 2017
  • Recently, layer-by-layer (LbL) assembly has emerged as a promising fabrication technique in controlling surface wetting properties. LbL assembly technique is eco-friendly versatile technique to control the hierarchical structure and surface properties in nano- and micro-scale by employing a variety of materials (e.g., polymers, surfactants, nanoparticles, etc.). This article reviews recent progress in controlling the surface wetting using LbL technique. In particular, technical trends and research findings on fabrication and the applications of superhydrophobic, superhydrophilc, and superoleophobic/superhydrophilic LbL surfaces are extensively explained. Additionally, basic principles and fabrication methods in emerging areas such as omniphobic, self-healing, intelligent and responsive LbL surfaces are discussed.

Layer Interface Analysis of Multi-Layered Soils by Numerical Methods (수치해석에 의한 다층토 압밀의 경계요소면 해석)

  • 김팔규;류권일;구기욱;남상규
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.349-356
    • /
    • 1999
  • In general, the term soft ground includes clayey soils, which have large compressibility and small shear resistance due to the external load. All process of consolidation in compressible soils can be explained in terms of a transfer of load from an incompressible pore-water to a compressible soil structure. Therefore, one of the most important subjects about the characteristics of the time-dependent consolidation of the clay foundation by the change of load may be the presumption of the final settlement caused by consolidation and the degree of consolidation according to the time. The problems of discontinuous layer interface are very important in the algorithm and programming for the analysis of multi-layered soils using a numerical analysis, finite difference method. Better results can be obtained by the Process for discontinuous layer interface, since it can help consolidation analysis to model the actual ground. The purpose of this paper Provides an efficient computer algorithm based on numerical analysis using finite difference method(F.D.M.) which account for multi-layered soils to determine the degree of consolidation and excess pore pressures relative to time and positions more realistically.

  • PDF

Resistivity Changes and Intermetallic Growth After Thermal Aging of Matte Tin-Plated Copper Sheet for Current Collector in Fuel Cell (연료전지 집전판용 주석도금 동판의 열 열화에 따른 금속간화합물 성장 및 비저항 변화)

  • Kim, Jae-Hun;Kim, Ju-Han;Han, Sang-Ok;Koo, Kyung-Wan;Keum, Young-Bum;Jeong, Kwi-Seong;Ko, Haeng-Zin
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.2067_2068
    • /
    • 2009
  • Resistivity changes and intermetallic growth after thermal aging of Matter tin-plated copper sheet for current collector in fuel cell were investigated to survey the diffusion of Cu into Sn in interface and surface. The results show that the intermetallic growth and resistivity depended on thermal aging temperature and dwell time. In Sn plate on a Cu substrate, $Cu_6Sn_5({\mu})$ and $Cu_3Sn({\varepsilon})$ intermetallics layer were formed at plate/substrate interface. $Cu_6Sn_5({\mu})$ intermetallics layer gradually changed $Cu_3Sn({\varepsilon})$. Moreover Cu get through Sn layer and it was diffused in the surface at $200^{\circ}C$. On the other hand, only $Cu_3Sn({\varepsilon})$ intermetallics layer were formed at plate/substrate interface at $300^{\circ}C$. Consequently, the intermetallics formation, thermal condition and oxidation of surface, causes increase in the resistivity of Tin-plated copper sheet.

  • PDF

Osteogenic Potential of the Periosteum and Periosteal Augmentation for Bone-tunnel Healing

  • Youn Inchan;Suh J-K Francis;Choi Kuiwon
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.2
    • /
    • pp.101-110
    • /
    • 2005
  • Periosteum and periosteum-derived progenitor cells have demonstrated the potential for stimulative applications in repairs of various musculoskeletal tissues. It has been found that the periosteum contains mesenchymal progenitor cells capable of differentiating into either osteoblasts or chondrocytes depending on the culture conditions. Anatomically, the periosteum is a heterogeneous multi-layered membrane, consisting of an inner cambium and an outer fibrous layer. The present study was designed to elucidate the cellular phenotypic characteristics of cambium and fibrous layer cells in vitro, and to assess whether structural integrity of the tendon in the bone tunnel can be improved by periosteal augmentation of the tendon­bone interface. It was found the cells from each layer showed distinct phenotypic characteristics in a primary monolayer culture system. Specifically, the cambium cells demonstrated higher osteogenic characteristics (higher alkaline phosphatase and osteocalcin levels), as compared to the fibrous cells. Also in vivo animal model showed that a periosteal augmentation of a tendon graft could enhance the structural integrity of the tendon-bone interface, when the periosteum is placed between the tendon and bone interface with the cambium layer facing toward the bone. These findings suggest that extra care needs to be taken in order to identify and maintain the intrinsic phenotypes of the heterogeneous cell types within the periosteum. This will improve our understanding of periosteum in applications for musculoskeletal tissue repairs and tissue engineering.

Adhesion Characteristics of Semiconductive and Insulating Silicone Rubber by Oxygen Plasma Treatment (산소 플라즈마 처리에 의한 반도전-절연 실리콘 고무의 접착 특성)

  • Lee Ki- Taek;Huh Chang-Su
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.2
    • /
    • pp.153-157
    • /
    • 2006
  • In this work, the effects of plasma treatment on surface properties of semiconductive silicone rubber were investigated in terms of X-ray photoelectron spectroscopy (XPS) and contact angles, The adhesion characteristics of semiconductive-insulating interface layer of silicone rubber were studied by measuring the T-peel strengths, The results of the chemical analysis showed that C-H bonds were broken due to plasma discharge and Silica-like bonds(SiOx, x=3${\~}$4) increased, It is thought that semiconductive silicone rubber surfaces treated with plasma discharge led to an increase in oxygen-containing functional groups, resulting in improving the degree of adhesion of the semiconductive-insulating interface layer of silicone rubber. However, the oxygen plama for 20 minute produces a damaged oxidized semiconductive silicone rubber layer, which acts as a weak layer producing a decrease in T-peel strength, These results are probably due to the modifications of surface functional groups or polar component of surface free energy of the semiconductive silicone rubber.

The effects of pile dup Ge-rich layer on the oxide growth of $Si_{1-x}Ge_{x}$/Si epitaxial layer (축적된 Ge층이 $Si_{1-x}Ge_{x}$/Si의 산화막 성장에 미치는 영향)

  • 신창호;강대석;박재우;송성해
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.449-452
    • /
    • 1998
  • We have studied the oxidatio nrte of $Si_{1-x}Ge_{x}$ epitaxial layer grown by MBE(molecular beam epitaxy). Oxidation were performed at 700.deg. C, 800.deg. C, 900.deg. C, and 1000.deg. C. After the oxidation, the results of AES(auger electron spectroscopy) showed that Ge was completely rejected out of the oxide and pile up at $SiO_{2}/$Si_{1-x}Ge_{x}$ interface. It is shown that the presence of Ge at the $SiO_{2}$/$Si_{1-x}Ge_{x}$ interface changes the dry oxidation rate. The dry oxidation rate was equal to that of pure Si regardless of Ge mole fraction at 700.deg. C and 800.deg.C, while it was decreased at both 900.deg. C and 1000.deg.C as the Ge mole fraction was increased. The ry oxidation rates were reduced for heavy Ge concentration, and large oxidation time. In the parabolic growth region of $Si_{1-x}Ge_{x}$ oxidation, The parabolic rate constant are decreased due to the presence of Ge-rich layer. After the longer oxidation at the 1000.deg.C, AES showed that Ge peak distribution at the $SiO_{2}$/$Si_{1-x}Ge_{x}$ interface reduced by interdiffusion of silicon and germanium.

  • PDF

Degradation Behavior and Resistivity Changes After Thermal Aging of Matte Tin-Plated Copper Sheet for Current Collector in Fuel Cell (시효처리된 연료전지 집전판용 Matte 주석도금 동판의 고온열화 거동과 비저항변화)

  • Kim, Ju-Han;Kim, Jae-Hun;Koo, Kyung-Wan;Keum, Young-Bum;Jeong, Kwi-Seong;Ko, Haeng-Jin;Han, Sang-Ok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.8
    • /
    • pp.1559-1565
    • /
    • 2009
  • Resistivity changes and intermetallic growth after thermal aging of Matter tin-plated copper sheet for current collector in fuel cell were investigated to survey the diffusion of Cu into Sn in interface and surface. The results show that the intermetallic growth and resistivity depended on thermal aging temperature and dwell time. In Sn plate on a Cu substrate, Cu6Sn5(${\mu}$) and Cu3Sn(${\varepsilon}$) intermetallics layer were formed at plate/substrate interface. Cu6Sn5(${\mu}$) intermetallics layer gradually changed Cu3Sn(${\varepsilon}$). Moreover Cu get through Sn layer and it was diffused in the surface at $200^{\circ}C$. On the other hand, only Cu3Sn(${\varepsilon}$) intermetallics layer were formed at plate/substrate interface at $300^{\circ}C$. Consequently, the intermetallics formation, thermal condition and oxidation of surface, causes increase in the resistivity of Tin-plated copper sheet.