Browse > Article
http://dx.doi.org/10.17702/jai.2017.18.4.171

Technology Trend of surface Wettability Control Using Layer-by-Layer Assembly Technique  

Sung, Chunghyun (Polymeric Materials Engineering Major, Dong-eui University)
Publication Information
Journal of Adhesion and Interface / v.18, no.4, 2017 , pp. 171-178 More about this Journal
Abstract
Recently, layer-by-layer (LbL) assembly has emerged as a promising fabrication technique in controlling surface wetting properties. LbL assembly technique is eco-friendly versatile technique to control the hierarchical structure and surface properties in nano- and micro-scale by employing a variety of materials (e.g., polymers, surfactants, nanoparticles, etc.). This article reviews recent progress in controlling the surface wetting using LbL technique. In particular, technical trends and research findings on fabrication and the applications of superhydrophobic, superhydrophilc, and superoleophobic/superhydrophilic LbL surfaces are extensively explained. Additionally, basic principles and fabrication methods in emerging areas such as omniphobic, self-healing, intelligent and responsive LbL surfaces are discussed.
Keywords
Layer-by-Layer; Superwetting; Superantiwetting;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. Soeno, K. Inokuchi and S. Shiratori, Applied Surface Science, 237, 543 (2004).
2 B. Jiang, H. J. Zhang, Y. L. Sun, L. H. Zhang, L. D. Xu, L. Hao and H. W. Yang, Applied Surface Science, 406, 150 (2017).   DOI
3 X. J. Guo, C. H. Xue, M. Li, X. Li and J. Z. Ma, Rsc Advances, 7, 25560 (2017).   DOI
4 X. Lu and Y. C. Hu, Bioresources, 11, 4605 (2016).
5 L. Zhai, F. C. Cebeci, R. E. Cohen and M. F. Rubner, Nano Letters, 4, 1349 (2004).   DOI
6 J. Yu, S. Y. Han, J. S. Hong, O. Sanyal and I. Lee, Langmuir, 32, 8494 (2016).   DOI
7 L. Zhang and J. Q. Sun, Macromolecules, 43, 2413 (2010).   DOI
8 L. C. Peng, Y. H. Meng and H. Li, Cellulose, 23, 2073 (2016).   DOI
9 N. Forsman, A. Lozhechnikova, A. Khakalo, L. S. Johansson, J. Vartiainen and M. Osterberg, Carbohydrate Polymers, 173, 392 (2017).   DOI
10 M. J. Kratochvil, U. Manna and D. M. Lynn, Journal of Polymer Science Part a-Polymer Chemistry, 55, 3127 (2017).   DOI
11 Y. H. Kim, Y. M. Lee, J. Y. Lee, M. J. Ko and P. J. Yoo, ACS Nano, 6, 1082 (2012).   DOI
12 S. Hwangbo, J. Heo, X. Lin, M. Choi and J. Hong, Scientific Reports, 6 (2016).
13 L. B. Zhang, Y. Li, J. Q. Sun and J. C. Shen, Langmuir, 24, 10851 (2008).   DOI
14 Z. Wu, D. Lee, M. F. Rubner and R. E. Cohen, Small, 3, 1445 (2007).   DOI
15 B. Peng, L. F. Tan, D. Chen, X. W. Meng and F. Q. Tang, Acs Applied Materials & Interfaces, 4, 96 (2012).   DOI
16 X. Du, X. Y. Li and J. H. He, ACS Applied Materials & Interfaces, 2, 2365 (2010).   DOI
17 X. Y. Li, X. Du and J. H. He, Langmuir, 26, 13528 (2010).   DOI
18 X. Y. Li and J. H. He, ACS Applied Materials & Interfaces, 5, 5282 (2013).   DOI
19 X. Du, X. M. Liu, H. M. Chen and J. H. He, Journal of Physical Chemistry C, 113, 9063 (2009).   DOI
20 X. M. Liu and J. H. He, Journal of Colloid and Interface Science, 314, 341 (2007).   DOI
21 H. X. Guo, Y. W. Ma, P. Z. Sun, S. P. Cui, Z. P. Qin and Y. C. Liang, RSC Advances, 5, 63429 (2015).   DOI
22 M. Choi, L. Xiangde, J. Park, D. Choi, J. Heo, M. Chang, C. Lee and J. Hong, Chemical Engineering Journal, 309, 463 (2017).   DOI
23 Z. X. Xue, S. T. Wang, L. Lin, L. Chen, M. J. Liu, L. Feng and L. Jiang, Advanced Materials, 23, 4270 (2011).   DOI
24 X. Lin, M. Yang, H. Jeong, M. Chang and J. Hong, Journal of Membrane Science, 506, 22 (2016).   DOI
25 D. Liu, M. W. Zhang, L. He, Y. Chen and W. W. Lei, Advanced Materials Interfaces, 4 (2017).
26 X. M. Liu, X. Du and J. H. He, Chemphyschem, 9, 305 (2008).   DOI
27 L. P. Xu, J. T. Peng, Y. B. Liu, Y. Q. Wen, X. J. Zhang, L. Jiang and S. T. Wang, ACS Nano, 7, 5077 (2013).   DOI
28 K. Hon, Y. C. Zeng, C. L. Zhou, J. H. Chen, X. F. Wen, S. P. Xu, J. Cheng, Y. G. Lin and P. H. Pi, Applied Surface Science, 416, 344 (2017).   DOI
29 A. Tuteja, W. Choi, M. L. Ma, J. M. Mabry, S. A. Mazzella, G. C. Rutledge, G. H. McKinley and R. E. Cohen, Science, 318, 1618 (2007).   DOI
30 P. S. Brown and B. Bhushan, Scientific Reports, 5 (2015).
31 F. C. Xu, X. Li, Y. Li and J. Q. Sun, ACS Applied Materials & Interfaces, 9, 27955 (2017).   DOI
32 T. S. Wong, S. H. Kang, S. K. Y. Tang, E. J. Smythe, B. D. Hatton, A. Grinthal and J. Aizenberg, Nature, 477, 443 (2011).   DOI
33 X. Y. Huang, J. D. Chrisman and N. S. Zacharia, ACS Macro Letters, 2, 826 (2013).   DOI
34 K. Manabe, S. Nishizawa, K. H. Kyung and S. Shiratori, ACS Applied Materials & Interfaces, 6, 13985 (2014).   DOI
35 S. Sunny, N. Vogel, C. Howell, T. L. Vu and J. Aizenberg, Advanced Functional Materials, 24, 6658 (2014).   DOI
36 M. C. Wu, N. An, Y. Li and J. Q. Sun, Langmuir, 32, 12361 (2016).   DOI
37 Y. Li, L. Li and J. Q. Sun, Angewandte Chemie-International Edition, 49, 6129 (2010).   DOI
38 Y. Li, S. S. Chen, M. C. Wu and J. Q. Sun, Advanced Materials, 26, 3344 (2014).   DOI
39 L. Yu, G. Y. Chen, H. L. Xu and X. K. Liu, ACS Nano, 10, 1076 (2016).   DOI
40 L. M. Wang, B. Peng and Z. H. Su, Langmuir, 26, 12203 (2010).   DOI
41 J. Yang, Z. Z. Zhang, X. H. Men, X. H. Xu, X. T. Zhu, X. Y. Zhou and Q. J. Xue, Journal of Colloid and Interface Science, 366, 191 (2012).   DOI
42 X. C. Chen, K. F. Ren, J. Wang, W. X. Lei and J. Ji, ACS Applied Materials & Interfaces, 9, 1959 (2017).   DOI
43 A. Chunder, K. Etcheverry, G. Londe, H. J. Cho and L. Zhai, Colloids and Surfaces a-Physicochemical and Engineering Aspects, 333, 187 (2009).
44 A. de Leon and R. C. Advincula, Acs Applied Materials & Interfaces, 6, 22666 (2014).   DOI
45 Y. M. Lu, M. A. Sarshar, K. Du, T. M. Chou, C. H. Choi and S. A. Sukhishvili, ACS Applied Materials & Interfaces, 5, 12617 (2013).   DOI