• 제목/요약/키워드: layer doping

검색결과 478건 처리시간 0.023초

원자층 증착법을 통하여 유리 기판에 증착한 Ti-ZnO 박막의 전기적 광학적 특성 (Electrical and Optical Properties of Ti-ZnO Films Grown on Glass Substrate by Atomic Layer Deposition)

  • 이우재;김태현;권세훈
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2018년도 춘계학술대회 논문집
    • /
    • pp.57-57
    • /
    • 2018
  • Zinc-oxide (ZnO), II-VI semiconductor with a wide and direct band gap (Eg: 3.2~3.4 eV), is one of the most potential candidates to substitute for ITO due to its excellent chemical, thermal stability, specific electrical and optoelectronic property. However, the electrical resistivity of un-doped ZnO is not low enough for the practical applications. Therefore, a number of doped ZnO films have been extensively studied for improving the electrical conductivities. In this study, Ti-doped ZnO films were successfully prepared by atomic layer deposition (ALD) techniques. ALD technique was adopted to careful control of Ti doping concentration in ZnO films and to show its feasible application for 3D nanostructured TCO layers. Here, the structural, optical and electrical properties of the Ti-doped ZnO depending on the Ti doping concentration were systematically presented. Also, we presented 3D nanostructured Ti-doped ZnO layer by combining ALD and nanotemplate processes.

  • PDF

각 층에 따른 염료감응형 태양전지의 특성 개선 - II (-특성증진 및 측정기를 중심으로) (An Improvement of the Characteristics of DSSC by Each Layers - II (- Property Improvement and Measuring System))

  • 마재평;박치선
    • 반도체디스플레이기술학회지
    • /
    • 제10권2호
    • /
    • pp.65-71
    • /
    • 2011
  • Properties of each layer in DSSC were investigated to improve solar cell characterstics. Also in this study, low costsolar simulator system is fabricated and used. Efficiency of DSSC is better in the case of thinner semiconductive layer, because thick semiconductive layer is acted as resistor. Sc-doped ZnO thin films showed better electrical property by proper donor doping effect. Among the dyes, DSSC containing N719 showed higher efficiency, because N719 have smaller electron affinity and shallow band gap.

Epitaxial Growth of Boron-doped Si Film using a Thin Large-grained Si Seed Layer for Thin-film Si Solar Cells

  • Kang, Seung Mo;Ahn, Kyung Min;Moon, Sun Hong;Ahn, Byung Tae
    • Current Photovoltaic Research
    • /
    • 제2권1호
    • /
    • pp.1-7
    • /
    • 2014
  • We developed a method of growing thin Si film at $600^{\circ}C$ by hot wire CVD using a very thin large-grained poly-Si seed layer for thin-film Si solar cells. The seed layer was prepared by crystallizing an amorphous Si film by vapor-induced crystallization using $AlCl_3$ vapor. The average grain size of the p-type epitaxial Si layer was about $20{\mu}m$ and crystallographic defects in the epitaxial layer were mainly low-angle grain boundaries and coincident-site lattice boundaries, which are special boundaries with less electrical activity. Moreover, with a decreasing in-situ boron doping time, the mis-orientation angle between grain boundaries and in-grain defects in epitaxial Si decreased. Due to fewer defects, the epitaxial Si film was high quality evidenced from Raman and TEM analysis. The highest mobility of $360cm^2/V{\cdot}s$ was achieved by decreasing the in-situ boron doping time. The performance of our preliminary thin-film solar cells with a single-side HIT structure and $CoSi_2$ back contact was poor. However, the result showed that the epitaxial Si film has considerable potential for improved performance with a reduced boron doping concentration.

A Study on Characteristic Improvement of IGBT with P-floating Layer

  • Kyoung, Sinsu;Jung, Eun Sik;Kang, Ey Goo
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권2호
    • /
    • pp.686-694
    • /
    • 2014
  • A power semiconductor device, usually used as a switch or rectifier, is very significant in the modern power industry. The power semiconductor, in terms of its physical properties, requires a high breakdown voltage to turn off, a low on-state resistance to reduce static loss, and a fast switching speed to reduce dynamic loss. Among those parameters, the breakdown voltage and on-state resistance rely on the doping concentration of the drift region in the power semiconductor, this effect can be more important for a higher voltage device. Although the low doping concentration in the drift region increases the breakdown voltage, the on-state resistance that is increased along with it makes the static loss characteristic deteriorate. On the other hand, although the high doping concentration in the drift region reduces on-state resistance, the breakdown voltage is decreased, which limits the scope of its applications. This addresses the fact that breakdown voltage and on-state resistance are in a trade-off relationship with a parameter of the doping concentration in the drift region. Such a trade-off relationship is a hindrance to the development of power semiconductor devices that have idealistic characteristics. In this study, a novel structure is proposed for the Insulated Gate Bipolar Transistor (IGBT) device that uses conductivity modulation, which makes it possible to increase the breakdown voltage without changing the on-state resistance through use of a P-floating layer. More specifically in the proposed IGBT structure, a P-floating layer was inserted into the drift region, which results in an alleviation of the trade-off relationship between the on-state resistance and the breakdown voltage. The increase of breakdown voltage in the proposed IGBT structure has been analyzed both theoretically and through simulations, and it is verified through measurement of actual samples.

Effect of chemical doping on heterostructured Fe-based superconductor Sr2VO3FeAs

  • Ok, Jong Mok;Na, Se Woong;Kim, Jun Sung
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제20권1호
    • /
    • pp.28-31
    • /
    • 2018
  • Phase diagrams of electron- and hole-doped $Sr_2VO_3FeAs$ are investigated using Co and Mn substitution at Fe site. Metallic nature survives only for Co (electron) doping, not for Mn (hole) doping. The conductivity of $Sr_2VO_3(Fe,M)As$ (M=Mn,Co) is sensitive to the structural modification of FeAs microstructure rather than carrier doping. This finding implies that the FeAs layer plays a dominant role on the charge conduction, thus the $SrVO_3$ layers should be considered as an insulating block. Also, we found that the superconductivity is rapidly suppressed by both dopants. This result is different from the conventional behavior that superconductivity is induced by doping in the most of Fe pnictides. Our finding strongly supports the uniqueness of $Sr_2VO_3FeAs$ among the Fe pnictide superconductors.

이온 도핑 방법에 의한 실리콘 박막의 도핑 연구 (A Study on Ion Shower Doping in Si Thin Film)

  • 유순성;전정목;이경하;문병연;장진
    • 전자공학회논문지A
    • /
    • 제31A권5호
    • /
    • pp.106-112
    • /
    • 1994
  • We have developed a large area ion shower doping system with an RF plasma ion source. The ion current density (i.e., doping concentration) increases with RF power and acceleration voltage. Using this technique, we investigated the optimum condition for ion doping of phosphorus in a-Si:H and poly-Si films. The optimum acceleration voltage and doping time are 6KV and 90sec, respectively, in a-Si:H films. Under this condition the electrical conductivity of ion-doped a-Si:H film is obtained ~10$^{-3}$/cm at room temperature. The sheet resistance decreases witnh acceleration voltage in ion-doped poly-Si, and a heavily-doped layer with a sheet resistance of 920$\Omega$/ㅁ is obtained by using ion doping and subsequent activation.

  • PDF

Co-doping을 이용한 OLED의 발광 효율 향상 (Improving electroluminescent efficiency of organic light emitting diodes by co-doping)

  • 박영욱;김영민;최진환;주병권
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 학술대회 및 기술세미나 논문집 디스플레이 광소자
    • /
    • pp.81-82
    • /
    • 2006
  • Doping is a well-known method for improving electroluminescent (EL) efficiency of organic light emitting diodes. In our study, doping with 2 materials simultaneously, we could achieve improved EL efficiency. The emission layer was tris-(8-hydroxyquinoline)aluminum, and the 2 dopants were N,N'-dimethyl-quinacridone (DMQA) and 10-(2-Benzothiazolyl)-2, 3, 6, 7-tetrahydro-1,1,7,7,-tetramethyl 1-1H, 5H, 11H-[1] benzopyrano [6,7,8-ij]quinolizin-11-one (C-545T). The EL intensity of co-doped device was nearly flat, it shows that co-doping technique could be a effective way to improve the EL efficiency. EL efficiency of Single-doped device based on DMQA and C-S45T were ~6.47Cd/A and ~7.45Cd/A, respectively. Co-doped device showed higher EL efficiency of ~8.30Cd/A.

  • PDF

Improved EL efficiency and operational lifetime of top-emitting white OLED with a co-doping technology

  • Lee, Meng-Ting;Tseng, Mei-Rurng
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권2호
    • /
    • pp.1411-1414
    • /
    • 2007
  • We have developed a top-emitting white organic electroluminescent device (TWOLED) incorporating a low-reflectivity molybdenum (Mo) anode and doped transport layers as well as a dual-layer architecture of doped blue and yellow emitters with the same blue host. The EL efficiency and operational lifetime of TWOLED can be enhanced by a factor of 1.2 and 3.4 than that of standard TWOLED, respectively, with a co-doping technology in yellow emitter by doping another blue dopant. The enhancement in device performances can be attributed to improve the energy transfer efficiency from blue host to yellow dopant through a blue dopant as medium in yellow emitter.

  • PDF

FHD법에 의한 $B_2O_3-P_2O_5-SiO_2$ 실리카막의 효과적인 $P_2O_5$ 도핑 (The Effective $P_2O_5$ Doping into $B_2O_3-P_2O_5-SiO_2$ Silica Layer Fabrication by Flame Hydrolysis Deposition)

  • 심재기;이윤학;성희경;최태구
    • 한국세라믹학회지
    • /
    • 제35권4호
    • /
    • pp.364-370
    • /
    • 1998
  • 광집적회로용 평면도파로를 구현하기 위한 $B_2O_3-P_2O_5-SiO_2$ 실리카 광도파막을 실리콘 기판위에 FDH(Flame Hydrolysis Depositon)법으로 제조하여 미립자의 미세구조, 실리카막의 굴절률과 조성을 고찰하였다. FHD법에서 도펀트(dopant)물질로, $B_1\;P_1\;Ge$ 등의 산화물이 사용되며, $B_1$ Ge 산화물의 경우 $SiO_2$와의 결합특성이 우수하여 비교적 도핑(doping)이 용이하지만 P의 경우 $P_2O_5$의 낮은 융점에 의한 증발 등으로 효과적인 도핑이 어렵다. 수직형 FHD 토치를 사용하고 화염온도, 기판온도, 토치와 기판간의 거리를 최적화하여 P 농도가 3.3 Wt%이상이고 고밀화 온도가 $1180^{\circ}C$ 이하인 양질의 실리카막을 얻었다. 실리카막의 굴절률은 $1.55\;\mu\textrm{m}$ 파장에서 $1.4480{\pm}1{\times}10^{-1}$로 측정되었으며, $22{\pm}1\;\mu\textrm{m}$의 두께를 보였다.

  • PDF