• Title/Summary/Keyword: layer deposition

Search Result 2,816, Processing Time 0.036 seconds

Fabrication of Hybrid Films Using Titanium Chloride and 2,4-hexadiyne-1,6-diol by Molecular Layer Deposition

  • Yun, Gwan-Hyeok;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.418-418
    • /
    • 2012
  • We fabricated a new type of hybrid film using molecular layer deposition (MLD). The MLD is a gas phase process analogous to atomic layer deposition (ALD) and also relies on a saturated surface reaction sequentially which results in the formation of a monolayer in each sequence. In the MLD process, polydiacetylene (PDA) layers were grown by repeated sequential surface reactions of titanium tetrachloride and 2,4-hexadiyne-1,6-diol with ultraviolet (UV) polymerization under a substrate temperature of $100^{\circ}C$. Ellipsometry analysis showed a self-limiting surface reaction process and linear growth of the hybrid films. Polymerization of the hybrid films was confirmed by infrared (IR) spectroscopy and UV-Vis spectroscopy. Composition of the films was confirmed by IR spectroscopy and X-ray photoelectron (XP) spectroscopy. The titanium oxide cross-linked polydiacetylene (TiOPDA) hybrid films exhibited good thermal and mechanical stabilities.

  • PDF

Structural and Electrical Properties of Aluminum Doped ZnO Electrodes Prepared by Atomic Layer Deposition for Application in Organic Solar Cells (유기태양전지 응용을 위한 원자층 증착 방식 제작의 알루미늄이 도핑 된 ZnO의 전기적, 구조적 특징)

  • Seo, Injun;Ryu, Sang Ouk
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.2
    • /
    • pp.1-5
    • /
    • 2014
  • Transparent and conducting aluminum-doped ZnO electrodes were fabricated by atomic layer deposition methods. The electrode showed the lowest resistivity of $5.73{\times}10^{-4}{\Omega}cm$ at a 2.5% cyclic layer deposition ratio of Trimethyl-aluminum and Diethyl-zinc chemicals. The electrodes showed minimum resistivity when deposited at a temperature of $225^{\circ}C$. The electrode also showed optical transmittance of about 92% at 300 nm. An organic solar cell made with a 300-nm-thick aluminum-doped ZnO electrode exhibited 2.0% power conversion efficiency.

A Study of Electro-Deposition for Pb-Sn-Cu Alloy System (연-주석-동계 합금속도에 관한 연구)

  • Kang, T.;Cho, C. S.;Yum, H. T.
    • Journal of Surface Science and Engineering
    • /
    • v.4 no.1
    • /
    • pp.16-23
    • /
    • 1971
  • In this study , fluoborte solution consisting of lead fluoborate, tin fluoborate and cupric acetate was used. By addition of small amount of Cu+= ion to the solution, the Cu content of deposition layer was almost controlled less than 5%. The amount of Cu in deposition layer was almost constant without any influence of Pb++ & Sn++ in the solution, and the amount of Pb was increased by the increase of total concentration of Pb++ +Sn++ in the solution, and the amount of Pb was increased by the increase of total concentration of Pb++ +Sn++ in the solution . Agitation of plating solution & low current density result in the increase of Cu content. Analyzing of microscopic structures and etching tests of the deposited alloy, it was believed that the alloy had a lamellar structure consisting of copper rich lamellar and lead rich layer.

  • PDF

Passivation of organic light emitting diodes with a-$SiN_x$ thin films grown by catalyzer enhanced chemical vapor deposition

  • Jeong, Jin-A;Kang, Jae-Wook;Kim, Han-Ki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.659-662
    • /
    • 2007
  • The characteristics of a $SiN_x$ passivation layer grown by a specially designed catalyzer enhanced chemical vapor deposition (CECVD) system and electrical and optical properties of OLEDs passivated with the $SiN_x$ layer are described. Despite the low substrate temperature, the single $SiN_x$ passivation layer, grown on the PC substrate, exhibited a low water vapor transmission rate of $2{\sim}6{\times}10^{-2}\;g/m^2/day$ and a high transmittance of 87 %. In addition, current-voltage-luminescence results of an OLED passivated with a 150 nm-thick $SiN_x$ film compared to nonpassivated sample were identical indicating that the performance of an OLED is not critically affected by radiation from tungsten catalyzer during the $SiN_x$ deposition.

  • PDF

Atomic Layer Deposition of HfO2 Films on Ge

  • Cho, Young Joon;Chang, Hyo Sik
    • Applied Science and Convergence Technology
    • /
    • v.23 no.1
    • /
    • pp.40-43
    • /
    • 2014
  • We investigated the growth characteristics and interfacial properties of $HfO_2$ films deposited on Ge substrate through atomic layer deposited (ALD) by using an in-situ medium energy ion scattering analysis. The growth kinetics of $HfO_2$ grown on a $GeO_2/Ge$ substrate through ALD is similar to that grown on an $SiO_2/Si$ substrate. However, the incubation period of $HfO_2$ deposition on Ge is shorter than that on Si. The $HfO_2$ grown on the GeO/Ge substrate shows a significant diffusion of Hf atoms into the substrate interface and GeO volatilization after annealing at $700^{\circ}C$. The presence of low-quality Ge oxide or suboxide may degrade the electrical performance of device.

Control of solid oxide fuel cell ceramic interfaces via atomic layer deposition (원자층 증착법을 통한 고체산화물 연료전지의 세라믹 인터페이스 제어)

  • Seo, Jongsu;Jung, WooChul;Kim, Jeong Hwan
    • Ceramist
    • /
    • v.23 no.2
    • /
    • pp.132-144
    • /
    • 2020
  • Solid oxide fuel cell (SOFC) have attracted much attention due to clean, efficient and environmental-friendly generation of electricity for next-generation energy conversion devices. Recently, many studies have been reported on improving the performance of SOFC electrodes and electrolytes by applying atomic layer deposition (ALD) process, which has advantages of excellent film quality and conformality, and precise control of film thickness by utilizing its unique self-limiting surface reaction. ALD process with these advantages has been shown to provide functional ceramic interfaces for SOFC electrodes and electrolytes. In this article, recent examples of successful functionalization and stabilization on SOFC electrodes and electrolytes by the application of ALD process for realizing high performance SOFC cells are reported.

Atomic Layer Deposition of ZnO Thin Films using Et2Zn:NEtMe2 precursor (Et2Zn:NEtMe2 전구체를 이용한 원자층 증착법 ZnO 박막)

  • Lee, U-Jae;Gwon, Se-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.05a
    • /
    • pp.103-104
    • /
    • 2015
  • 정확한 두께와 조성 제어, 훌륭한 재현성의 박막을 형성할 수 있는 Atomic layer deposition 방법으로 증착시킨 ZnO 박막은 여러 분야에 적용될 수 있기 때문에 최근 많은 주목을 받고 있다. ALD-ZnO 박막을 형성하기 위하여 가장 흔히 사용되는 전구체 (precursor)와 반응체 (reactant)는 DEZ(DiethylZinc)와 $H_2O$이다. 그러나 DEZ 전구체를 사용한 ALD-ZnO 박막은 낮은 열적 안정성이 문제로 지적되어져 왔으며, 또한 여러 분야의 적용 및 산업화를 위해서는 높은 증착률, 큰 범위의 전기적 저항, 높은 투과도가 필요로 한다. 본 연구에서는 atomic layer deposition 기법을 통해 열적 안정성을 가진 새로운 전구체인 DEZDMEA ($Et_2Zn:NEtMe_2$)을 사용하여 ZnO 박막을 증착하였다. DEZDMEA ($Et_2Zn:NEtMe_2$) 및 $H_2O$ 주입 시간에 따른 증착률와 전기적 성질, 투과도를 조사하였다.

  • PDF

Application of Plasma Processes in Atomic Layer Deposition (ALD 공정에서의 플라즈마 응용)

  • Lee, U-Jae;Yun, Hye-Won;Lee, Dong-Gwon;Yun, Eun-Yeong;Lee, Ha-Jin;Gwon, Se-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.05a
    • /
    • pp.82-82
    • /
    • 2015
  • 원자층 단위의 정밀 제어가 가능한 원자층 증착법(Atomic Layer Deposition)은 반도체, 디스플레이, 에너지, MEMS 등 다양한 분야에서 점차 그 응용 범위를 확대하고 있다. 응용분야의 확대와 함께, 물질적 측면에서는 산화물 위주의 적용에서 나아가 금속층, 질화물 등 다양한 물질 개발로 이루어져 왔으며, 이는 precursor의 개발과 함께 공정적 측면에서 plasms를 이용한 plasma-enhanced atomic layer deposition (PEALD)의 개발과 함께 이루어져 왔다. 본 발표에서는 ALD 공정에서의 플라즈마의 활용에 대하여 논의하고, ALD 공정에서의 플라즈마 적용에 따른 영향을 살펴보았다.

  • PDF

Single-phase Gallium Nitride on Sapphire with buffering AlN layer by Laser-induced CVD

  • Hwang Jin-Soo;Lee Sun-Sook;Chong Paul-Joe
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.1
    • /
    • pp.28-33
    • /
    • 1994
  • The laser-assisted chemical vapor deposition (LCVD) is described, by which the growth of single-phase GaN epitaxy is achieved at lower temperatures. Trimethylgallium (TMG) and ammonia are used as source gases to deposit the epitaxial films of GaN under the irradiation of ArF excimer laser (193 nm). The as-grown deposits are obtained on c-face sapphire surface near 700$^{\circ}$C, which is substantially reduced, relative to the temperatures in conventional thermolytic processes. To overcome the lattice mismatch between c-face sapphire and GaN ad-layer, aluminum nitride(AlN) is predeposited as buffer layer prior to the deposition of GaN. The gas phase interaction is monitored by means of quadrupole mass analyzer (QMA). The stoichiometric deposition is ascertained by X-ray photoelectron spectroscopy (XPS). The GaN deposits thus obtained are characterized by X-ray diffractometer (XRD), scanning electron microscopy (SEM) and van der Pauw method.

Area selective atomic layer deposition via surface reaction engineering: a review (표면 반응 제어를 통한 영역 선택적 원자층 증착법 연구 동향)

  • Ko, Eun-Chong;Ahn, Ji Sang;Han, Jeong Hwan
    • Journal of Surface Science and Engineering
    • /
    • v.55 no.6
    • /
    • pp.328-341
    • /
    • 2022
  • Area selective atomic layer deposition (AS-ALD) is a bottom-up nanopattern fabrication method that can grow the ALD films only on the desired substrate areas without using photolithography and etching processes. Particularly, AS-ALD has attracted great attention in the semiconductor manufacturing process due to its advantage in reducing edge placement error by fabricating self-aligned patterns. In this paper, the basic principles and characteristics of AS-ALD are described. In addition, various approaches for achieving AS-ALD with excellent selectivity were comprehensively reviewed. Finally, the technology development to overcome the selectivity limit of AS-ALD was introduced along with future prospects.