DOI QR코드

DOI QR Code

Atomic Layer Deposition of HfO2 Films on Ge

  • Cho, Young Joon (Graduate School of Green Energy Technology, Chungnam National University) ;
  • Chang, Hyo Sik (Graduate School of Green Energy Technology, Chungnam National University)
  • Received : 2014.01.09
  • Accepted : 2014.01.31
  • Published : 2014.01.30

Abstract

We investigated the growth characteristics and interfacial properties of $HfO_2$ films deposited on Ge substrate through atomic layer deposited (ALD) by using an in-situ medium energy ion scattering analysis. The growth kinetics of $HfO_2$ grown on a $GeO_2/Ge$ substrate through ALD is similar to that grown on an $SiO_2/Si$ substrate. However, the incubation period of $HfO_2$ deposition on Ge is shorter than that on Si. The $HfO_2$ grown on the GeO/Ge substrate shows a significant diffusion of Hf atoms into the substrate interface and GeO volatilization after annealing at $700^{\circ}C$. The presence of low-quality Ge oxide or suboxide may degrade the electrical performance of device.

Keywords

References

  1. C. O. Chui, H. Kim, D. Chi, B. B. Triplett, P. C. Mclntyre, and K. C. Saraswat, Tech. Dig. Int. Electron Devices Meet., 437 (2002).
  2. H. Shang, H. Okorn-Schmidt, K. K. Chan, M. Copel, J. A. Ott, P. M. Ott, P. M. Kozlowsi, S. E. Steen, H. -S. P. Wong, E. C. Jones, and W. E. Haensch, Tech. Dig. -Int. Electron Devices Meet., 441 (2002).
  3. W. -H. Kim, B. Kim, and H. Kim, J. Korean Vac. Soc. 19, 14 (2010). https://doi.org/10.5757/JKVS.2010.19.1.014
  4. S. Swaminathan, Y. Sun, P. Pianetta, and P. C. McIntyre, J. Appl. Phys. 110, 094105 (2011). https://doi.org/10.1063/1.3647761
  5. W. P. Bai, N. Lu, J. Liu, A. Ramirez, D. L. Kwong, D. Wristers, A. Ritenour, L. Lee, and D. Antoniadis, VLSI Tech. Dig, 121 (2003).
  6. E. P. Gusev, H. C. Lu, T. Gustafsson, and E. Garfunkel, Phys. Rev. B 52, 1759 (1995). https://doi.org/10.1103/PhysRevB.52.1759
  7. H. S. Chang, H. Hwang, M.-H. Cho and D.W. Moon, Appl. Phys. Lett. 86, 031906 (2005). https://doi.org/10.1063/1.1850596
  8. M. Caymaxa, S. Van Elshocht, M. Houssa, A. Delabie, T. Conard, M. Meuris, M.M. Heyns, A. Dimoulas, S. Spiga, M. Fanciulli, J.W. Seo, L.V. Goncharova, Materials Science and Engineering B 135, 256 (2006). https://doi.org/10.1016/j.mseb.2006.08.016
  9. E. Golias, L. Tsetseris, A. Dimoulas and S. T. Pantelides, Microelectron.Eng. 88, 427 (2011). https://doi.org/10.1016/j.mee.2010.07.041
  10. K. Kita, S. Suzuki, H. Nomura, T. Takahashi, T. Nishimura and A. Toriumi, Jpn. J. Appl. Phys. 47, 2349 (2008). https://doi.org/10.1143/JJAP.47.2349
  11. H. Shang, K.L. Lee, P. Kozlowski, C. D'Emic, I. Babich, E. Sikorski, M. Ieong, H.S.P. Wong, K. Guarini and W. Haensch, IEEE Electron Device Lett. 25, 135 (2004). https://doi.org/10.1109/LED.2003.823060
  12. C. H. Huang, D. S. Yu, A. Chin, W. J. Chen, C. X. Zhu, M. F. Li, B. J. Cho, and D. L. Kwong, Tech. Dig. Int. Electron Devices Meet., 319 (2003).
  13. M. -H. Cho, H. S. Chang, D. W. Moon, S. K. Kang, B. K. Min, D. -H. Ko, H. S. Kim, Paul C. McIntyre, J. H. Lee, J. H. Ku, and N. I. Lee, Appl. Phys. Lett. 84, 1171 (2004). https://doi.org/10.1063/1.1647703