DOI QR코드

DOI QR Code

Control of solid oxide fuel cell ceramic interfaces via atomic layer deposition

원자층 증착법을 통한 고체산화물 연료전지의 세라믹 인터페이스 제어

  • Seo, Jongsu (Dept. Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Jung, WooChul (Dept. Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Kim, Jeong Hwan (Department of Advanced Materials Engineering, Hanbat National University)
  • 서종수 (한국과학기술원(KAIST) 신소재공학과) ;
  • 정우철 (한국과학기술원(KAIST) 신소재공학과) ;
  • 김정환 (국립한밭대학교 신소재공학과)
  • Received : 2020.05.20
  • Accepted : 2020.06.02
  • Published : 2020.06.30

Abstract

Solid oxide fuel cell (SOFC) have attracted much attention due to clean, efficient and environmental-friendly generation of electricity for next-generation energy conversion devices. Recently, many studies have been reported on improving the performance of SOFC electrodes and electrolytes by applying atomic layer deposition (ALD) process, which has advantages of excellent film quality and conformality, and precise control of film thickness by utilizing its unique self-limiting surface reaction. ALD process with these advantages has been shown to provide functional ceramic interfaces for SOFC electrodes and electrolytes. In this article, recent examples of successful functionalization and stabilization on SOFC electrodes and electrolytes by the application of ALD process for realizing high performance SOFC cells are reported.

Keywords

References

  1. Park T. J., Kim J. H., Jang J. H., Lee C.-K., Na K. D., Lee S. Y., Jung H.-S., Kim M., Han S., Hwang C. S., "Reduction of electrical defects in atomic layer deposited $HfO_2$ films by Al doping," Chem. Mater., 22 [14] 4175-4184 (2010). https://doi.org/10.1021/cm100620x
  2. Kim S. K., Choi G. J., Kim J. H., Hwang C. S, "Growth behavior of Al-doped $TiO_2$ thin films by atomic layer deposition," Chem. Mater., 20 [11] 3723-3727 (2008). https://doi.org/10.1021/cm800280t
  3. Yu D., Yang Y.-Q., Chen, Z., Tao Y., Liu Y.-F., "Recent progress on thin-film encapsulation technologies for organic electronic devices," Opt. Commun., 362, 43-49 (2016). https://doi.org/10.1016/j.optcom.2015.08.021
  4. Meng X., Wang X. Geng, D., Ozgit-Akgun C., Schneider N., Elam, J. W, "Atomic layer deposition for nanomaterial synthesis and functionalization in energy technology," Mater. Horiz., 4 [2] 133-154 (2017). https://doi.org/10.1039/C6MH00521G
  5. Seo J., Tsvetkov N., Jeong S. J., Yoo Y., Ji S., Kim J. H., Kang J. K., Jung W. J., "Interfaces, Gas Permeable Inorganic Shell Improves the Coking Stability and Electrochemical Reactivity of Pt towards Methane Oxidation," ACS Appl. Mater. Interfaces., 12 4405-4413 (2020) https://doi.org/10.1021/acsami.9b16410
  6. Ylilammi M. J., "Monolayer thickness in atomic layer deposition," Thin Solid Films., 279 [1-2] 124-130 (1996). https://doi.org/10.1016/0040-6090(95)08159-3
  7. Puurunen, R. L., "Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process," J. Appl. Phys., 97 [12] 9 (2005). https://doi.org/10.1063/1.1940727
  8. Gordon R. G., Hausmann D., Kim, E., Shepard, J., "A kinetic model for step coverage by atomic layer deposition in narrow holes or trenches," Chem. Vap. Depos., 9 [2] 73-78 (2003). https://doi.org/10.1002/cvde.200390005
  9. Kim J. H., Park T. J., Kim S. K., Cho D.-Y., Jung H.-S., Lee S. Y., Hwang, C. S., "Chemical structures and electrical properties of atomic layer deposited $HfO_2$ thin films grown at an extremely low temperature (${\leq}100^{\circ}C$) using $O_3$ as an oxygen source," Appl. Surf. Sci., 292 852-856 (2014). https://doi.org/10.1016/j.apsusc.2013.12.061
  10. Shim J. H., Chao C.-C., Huang H., Prinz, F., "Atomic layer deposition of yttria-stabilized zirconia for solid oxide fuel cells," Chem. Mater., 19 [15] 3850-3854 (2007). https://doi.org/10.1021/cm070913t
  11. Fan Z., Chao C.-C., Hossein-Babaei F., Prinz, F., "Improving solid oxide fuel cells with yttria-doped ceria interlayers by atomic layer deposition," J. Mater. Chem., 21 [29] 10903-10906 (2011). https://doi.org/10.1039/c1jm11550b
  12. Seo H. G., Ji S., Seo J., Kim S., Koo B., Choi Y., Kim H., Kim J. H., Kim, T.-S., Jung W., "Compounds, Sintering-resistant platinum electrode achieved through atomic layer deposition for thin-film solid oxide fuel cells," J. Alloy. Compd., 155347 (2020).
  13. Go D., Yang B. C., Shin J. W., Kim H. J., Lee S., Kye S., Kim, S., An, J., "Atomic layer deposited YSZ overlayer on Ru for direct methane utilization in solid oxide fuel cell," Ceram. Int., 46 [2] 1705-1710 (2020). https://doi.org/10.1016/j.ceramint.2019.09.143
  14. Gong Y., Palacio D., Song X., Patel R. L., Liang X., Zhao X., Goodenough J. B., Huang K. J., "Stabilizing nanostructured solid oxide fuel cell cathode with atomic layer deposition," Nano Lett., 13 [9] 4340-4345 (2013). https://doi.org/10.1021/nl402138w
  15. Zhang Y., Wen Y., Huang K., Nicholas J., "Atomic Layer Deposited Zirconia Overcoats as On-Board Strontium Getters for Improved Solid Oxide Fuel Cell Nanocomposite Cathode Durability," ACS Appl. Energy Mater., 3 [4], 4057-4067 (2020). https://doi.org/10.1021/acsaem.0c00558
  16. Lu J., Fu B., Kung M. C., Xiao G., Elam J. W., Kung H. H., Stair, P., "Cokingand sintering-resistant palladium catalysts achieved through atomic layer deposition," Science, 335 [6073] 1205-1208 (2012). https://doi.org/10.1126/science.1212906
  17. Shim J. H., Jiang X., Bent S. F., Prinz F. "Catalysts with Pt surface coating by atomic layer deposition for solid oxide fuel cells," J. Electrochm. Soc., 157 [6] B793-B797 (2010). https://doi.org/10.1149/1.3368787
  18. Jeong H. J., Kim J. W., Bae K., Jung H., Shim J., "Platinum-ruthenium heterogeneous catalytic anodes prepared by atomic layer deposition for use in direct methanol solid oxide fuel cells," ACS Catal., 5 [3] 1914-1921 (2015). https://doi.org/10.1021/cs502041d
  19. Choi H. J., Bae K., Grieshammer S., Han G. D., Park S. W., Kim J. W., Jang, D. Y., Koo J., Son J. W., Martin M., "Surface tuning of solid oxide fuel cell cathode by atomic layer deposition," Adv. Energy. Mater., 8 [33] 1802506 (2018). https://doi.org/10.1002/aenm.201802506