Browse > Article
http://dx.doi.org/10.31613/ceramist.2020.23.2.06

Control of solid oxide fuel cell ceramic interfaces via atomic layer deposition  

Seo, Jongsu (Dept. Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST))
Jung, WooChul (Dept. Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST))
Kim, Jeong Hwan (Department of Advanced Materials Engineering, Hanbat National University)
Publication Information
Ceramist / v.23, no.2, 2020 , pp. 132-144 More about this Journal
Abstract
Solid oxide fuel cell (SOFC) have attracted much attention due to clean, efficient and environmental-friendly generation of electricity for next-generation energy conversion devices. Recently, many studies have been reported on improving the performance of SOFC electrodes and electrolytes by applying atomic layer deposition (ALD) process, which has advantages of excellent film quality and conformality, and precise control of film thickness by utilizing its unique self-limiting surface reaction. ALD process with these advantages has been shown to provide functional ceramic interfaces for SOFC electrodes and electrolytes. In this article, recent examples of successful functionalization and stabilization on SOFC electrodes and electrolytes by the application of ALD process for realizing high performance SOFC cells are reported.
Keywords
solid oxide fuel cell (SOFC); atomic layer deposition(ALD); ceramic interface; functionalization; 3-D nanostructure;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Yu D., Yang Y.-Q., Chen, Z., Tao Y., Liu Y.-F., "Recent progress on thin-film encapsulation technologies for organic electronic devices," Opt. Commun., 362, 43-49 (2016).   DOI
2 Meng X., Wang X. Geng, D., Ozgit-Akgun C., Schneider N., Elam, J. W, "Atomic layer deposition for nanomaterial synthesis and functionalization in energy technology," Mater. Horiz., 4 [2] 133-154 (2017).   DOI
3 Seo J., Tsvetkov N., Jeong S. J., Yoo Y., Ji S., Kim J. H., Kang J. K., Jung W. J., "Interfaces, Gas Permeable Inorganic Shell Improves the Coking Stability and Electrochemical Reactivity of Pt towards Methane Oxidation," ACS Appl. Mater. Interfaces., 12 4405-4413 (2020)   DOI
4 Ylilammi M. J., "Monolayer thickness in atomic layer deposition," Thin Solid Films., 279 [1-2] 124-130 (1996).   DOI
5 Puurunen, R. L., "Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process," J. Appl. Phys., 97 [12] 9 (2005).   DOI
6 Gordon R. G., Hausmann D., Kim, E., Shepard, J., "A kinetic model for step coverage by atomic layer deposition in narrow holes or trenches," Chem. Vap. Depos., 9 [2] 73-78 (2003).   DOI
7 Kim J. H., Park T. J., Kim S. K., Cho D.-Y., Jung H.-S., Lee S. Y., Hwang, C. S., "Chemical structures and electrical properties of atomic layer deposited $HfO_2$ thin films grown at an extremely low temperature (${\leq}100^{\circ}C$) using $O_3$ as an oxygen source," Appl. Surf. Sci., 292 852-856 (2014).   DOI
8 Shim J. H., Chao C.-C., Huang H., Prinz, F., "Atomic layer deposition of yttria-stabilized zirconia for solid oxide fuel cells," Chem. Mater., 19 [15] 3850-3854 (2007).   DOI
9 Fan Z., Chao C.-C., Hossein-Babaei F., Prinz, F., "Improving solid oxide fuel cells with yttria-doped ceria interlayers by atomic layer deposition," J. Mater. Chem., 21 [29] 10903-10906 (2011).   DOI
10 Seo H. G., Ji S., Seo J., Kim S., Koo B., Choi Y., Kim H., Kim J. H., Kim, T.-S., Jung W., "Compounds, Sintering-resistant platinum electrode achieved through atomic layer deposition for thin-film solid oxide fuel cells," J. Alloy. Compd., 155347 (2020).
11 Go D., Yang B. C., Shin J. W., Kim H. J., Lee S., Kye S., Kim, S., An, J., "Atomic layer deposited YSZ overlayer on Ru for direct methane utilization in solid oxide fuel cell," Ceram. Int., 46 [2] 1705-1710 (2020).   DOI
12 Gong Y., Palacio D., Song X., Patel R. L., Liang X., Zhao X., Goodenough J. B., Huang K. J., "Stabilizing nanostructured solid oxide fuel cell cathode with atomic layer deposition," Nano Lett., 13 [9] 4340-4345 (2013).   DOI
13 Zhang Y., Wen Y., Huang K., Nicholas J., "Atomic Layer Deposited Zirconia Overcoats as On-Board Strontium Getters for Improved Solid Oxide Fuel Cell Nanocomposite Cathode Durability," ACS Appl. Energy Mater., 3 [4], 4057-4067 (2020).   DOI
14 Lu J., Fu B., Kung M. C., Xiao G., Elam J. W., Kung H. H., Stair, P., "Cokingand sintering-resistant palladium catalysts achieved through atomic layer deposition," Science, 335 [6073] 1205-1208 (2012).   DOI
15 Kim S. K., Choi G. J., Kim J. H., Hwang C. S, "Growth behavior of Al-doped $TiO_2$ thin films by atomic layer deposition," Chem. Mater., 20 [11] 3723-3727 (2008).   DOI
16 Shim J. H., Jiang X., Bent S. F., Prinz F. "Catalysts with Pt surface coating by atomic layer deposition for solid oxide fuel cells," J. Electrochm. Soc., 157 [6] B793-B797 (2010).   DOI
17 Jeong H. J., Kim J. W., Bae K., Jung H., Shim J., "Platinum-ruthenium heterogeneous catalytic anodes prepared by atomic layer deposition for use in direct methanol solid oxide fuel cells," ACS Catal., 5 [3] 1914-1921 (2015).   DOI
18 Choi H. J., Bae K., Grieshammer S., Han G. D., Park S. W., Kim J. W., Jang, D. Y., Koo J., Son J. W., Martin M., "Surface tuning of solid oxide fuel cell cathode by atomic layer deposition," Adv. Energy. Mater., 8 [33] 1802506 (2018).   DOI
19 Park T. J., Kim J. H., Jang J. H., Lee C.-K., Na K. D., Lee S. Y., Jung H.-S., Kim M., Han S., Hwang C. S., "Reduction of electrical defects in atomic layer deposited $HfO_2$ films by Al doping," Chem. Mater., 22 [14] 4175-4184 (2010).   DOI