• Title/Summary/Keyword: layer by layer

Search Result 24,459, Processing Time 0.055 seconds

Study on Hardness and Corrosion Resistance of Magnesium by Anodizing and Sealing Treatment With Nano-diamond Powder (양극산화와 나노 다이아몬드 분말 봉공처리에 의한 마그네슘의 경도와 부식에 관한 연구)

  • Kang, Soo Young;Lee, Dae Won
    • Journal of Powder Materials
    • /
    • v.21 no.4
    • /
    • pp.260-265
    • /
    • 2014
  • In this study, in order to increase surface ability of hardness and corrosion of magnesium alloy, anodizing and sealing with nano-diamond powder was conducted. A porous oxide layer on the magnesium alloy was successfully made at $85^{\circ}C$ through anodizing. It was found to be significantly more difficult to make a porous oxide layer in the magnesium alloy compared to an aluminum alloy. The oxide layer made below $73^{\circ}C$ by anodizing had no porous layer. The electrolyte used in this study is DOW 17 solution. The surface morphology of the magnesium oxide layer was investigated by a scanning electron microscope. The pores made by anodizing were sealed by water and aqueous nano-diamond powder respectively. The hardness and corrosion resistance of the magnesium alloy was increased by the anodizing and sealing treatment with nano-diamond powder.

A Study on the Multi-Billet Extrusion of the Two-Layer Tubes by CDA 365/Al 1100 and Al 2014/Al 1100 (CDA 365/Al 1100과 Al 2014/Al 1100 이중 관의 다소재 압출에 관한 연구)

  • Kim, H.S.;Lee, K.H.;Han, S.S.;Han, C.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.333-336
    • /
    • 2006
  • A new forming method for metal/ other metal two-layer tubes by multi-billet extrusion (MBE) is introduced. The forming possibilities of two-layer tubes CDA 365(inner)/Al 1100(outer) and Al 2014(inner)/Al 1100(outer) by MBE are investigated according to the given frictional condition and die profile. The results show that two-layer tube composed by two types tube as abovementioned can be manufactured by MBE. Some stated variables in the forming process such as effective stress and normalized pressure at welding surface are analyzed by FEM code ($DEFORM^{TM}$-3D)

  • PDF

Current Voltage Characteristic of ZTO Thin Film by Negative Resistance (ZTO 박막의 부성저항에 의한 전류전압특성)

  • Oh, Teresa
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.2
    • /
    • pp.29-31
    • /
    • 2019
  • The ZTO/p-Si thin film was produced and investigated for tunneling phenomena caused by the interface characteristics of the depletion layer. ZTO thin film was deposited and heat treated to produce barrier potentials by the depletion layer. The negative resistance characteristics were shown in the thin film of ZTO heat treated at $100^{\circ}C$, and the insulation properties were the best. Current decreased in the negative voltage direction by nonlinear show key characteristics, and current decreased in tunneling phenomenon by negative resistance in the positive voltage direction. Heat treated at $100^{\circ}C$, the ZTO thin film has increased barrier potential in the areas of the depletion layer and therefore the current has increased rapidly. The current has decreased again as we go beyond the depletion layer. Therefore, tunneling can be seen to make insulation better. In the ZTO thin film heat treated at $70^{\circ}C$ without tunneling, leakage current occurred as current increased at positive voltage. Therefore, tunneling effects by negative resistance were found to enhance insulation properties electrically.

Effects of Soil Hardness on the Root Distribution of Pinus rigida Mill. Planted in Association with Sodding Works on the Denuded Land (사방시공지(砂防施工地)에 있어서 리기다소나무의 수근(樹根)의 분포(分布)에 미치는 토양견밀도(土壤堅密度)의 영향(影響))

  • Cho, Hi Doo
    • Journal of Korean Society of Forest Science
    • /
    • v.56 no.1
    • /
    • pp.66-76
    • /
    • 1982
  • Soil harness represents such physical properties as porosity, amount of water, bulk density and soil texture. It is very important to know the mechanical properties of soil as well as the chemical in order to research the fundamental phenomena in the growth and the distribution of tree roots. The writer intended to grip soil hardness by soil layer and also to grasp the root distribution and the correlation between soil hardness and the root distribution of Pinus riguda Mill. planted on the denuded hillside with sooding works by soil layer on soil profile. The site investigated is situated at Peongchang-ri 13, Kocksung county, Chon-nam Province. The area is consisted of 3.63 ha having on elevation of 167.5-207.5 m. Soil texture is sandy loam and parant rock in granite. Average slope of the area is $17^{\circ}-30^{\circ}$. Soil moisture condition is dry. Main exposure of the area is NW or SW. The total number of plots investigated was 24 plots. It divided into two groups by direction each 12 plots in NW and SW and divided into three groups by the position of mountain plots in foot of mountain, in hillside, and in summit of mountain, respectively. Each sampling tree was selected as specimen by purposive sampling and soil profile was made at the downward distance of 50cm form the sampling tree at each plot. Soil hardness, soil layer surveying, root distribution of the tree and vegetation were measured and investigated at the each plot. The soil hardness measured by the Yamanaka Soil Hardness Tester in mm unit. the results are as follows: 1) Soil hardness increases gradually in conformity with the increment of soil depth. The average soil indicator hardness by soil layer are as follows: 14.6mm in I - soil layer (0-10cm in depth from soil surface), 16.2mm in II - soil layer (10-20cm), 17.2 in III - soil layer (20-30cm), 18.3mm in IV - soil layer(30-40cm), 19.8mm in V - soil layer (4.50mm). 2) The tree roots (less than 20mm in diameter) distribute more in the surface layer than in the subsoil layer and decrease gradually according to the increment of soil depth. The ratio of the root distribution can be illustrated by comparing with each of five soil layers from surface to subsoil layer as follows: I - soil layer; 31%, II - soil layer; 26%, III - soil layer; 18%, IV - soil layer; 12%, V - soil layer; 13%, 3) Soil hardness and tree root distribution (less than 20mm in diameter) of Pinus rigida Mill. correlate negatively each other; the more soil hardness increases, the most root distribution decreases. The correlation coefficients between soil hardness and distribution of tree roots by soil layer are as follows: I - soil layer; -0.3675 (at the 10% significance level), II - soil layer; -0.5299 (at the 1% significance level), III - soil layer; -0.5573 (at the 2% significance level), IV - soil layer; -0.6922 (at the 5% significance level), V - soil layer; -0.7325 (at the 2% significance level). 4) the most suitable range of soil hardness for the growth of Pinus rigida Mill is the range of 12-14.9mm in soil indicator hardness. In this range of soil indicator hardness, the root distribution of this tree amounts to 41.8% in spite of 33% in soil harness and under the 20.9mm of soil indicator hardness, the distribution amounts to 93.2% in spite of 82% in soil hardness. Judging from above facts, the roots of Pinus rigida can easily grow within the soil condition of 20.9mm in soil indicator hardness. 5) The soil layers are classified by their depths from the surface soil.

  • PDF

Implementation of handwritten digit recognition CNN structure using GPGPU and Combined Layer (GPGPU와 Combined Layer를 이용한 필기체 숫자인식 CNN구조 구현)

  • Lee, Sangil;Nam, Kihun;Jung, Jun Mo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.3 no.4
    • /
    • pp.165-169
    • /
    • 2017
  • CNN(Convolutional Nerual Network) is one of the algorithms that show superior performance in image recognition and classification among machine learning algorithms. CNN is simple, but it has a large amount of computation and it takes a lot of time. Consequently, in this paper we performed an parallel processing unit for the convolution layer, pooling layer and the fully connected layer, which consumes a lot of handling time in the process of CNN, through the SIMT(Single Instruction Multiple Thread)'s structure of GPGPU(General-Purpose computing on Graphics Processing Units).And we also expect to improve performance by reducing the number of memory accesses and directly using the output of convolution layer not storing it in pooling layer. In this paper, we use MNIST dataset to verify this experiment and confirm that the proposed CNN structure is 12.38% better than existing structure.

Load of Soil Layers Established with Perlite (펄라이트로 조성된 토양층의 하중)

  • 이성기;류남형;허근영
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.30 no.1
    • /
    • pp.87-95
    • /
    • 2002
  • This study was carried out to investigate the load of soil layers affected by soil depth in artificial soil alone or in blends with Loam with various ratio. The artificial soils were perlite large grain, perlite small grain, and perlite small grains blended with Loam (sand 46%, silt 40%, clay 14%) at a ratio of 8:2, 6:4, 5:5 (v/v). The soil layers were divided into a planting layer and a well-drained layer, then the weight of each layer in the air-dried state and in the field capacity were determined. The data were subjected to correlation analysis, regression analysis, and paired samples t-test. The summarized results are as follows; 1) In the air-dried state, the regression equations of the well-drained layer weight(kg/m2) in perlite large grain, planting layer weight in perlite small grain, planting layer weight in perlite small grain biended with loam(8:2, v/v), perlite small grain blended with loam(6:4, v/v), and perlite small grain blended with loam(5:5, v/v) were; 1.65824*X+0.026, 1.52292*X-0.052, 3.21468*X+0.515, 6.17549*X+ 0.083, and 6.02100*X + 33.133, respectively, where X is soil depth measured in Centimeters. 2) In the field capacity, the regression equations of the well-drained layer weight(kg/m2) in perlite large grain, planting layer weight in perlite small grain, planting layer weight in perlite small grain blended with loam(8:2, v/v), perlite small grain blended with loam(6:4, v/v), and perlite small grain blended with loam(5:5, v/v) were 5.055*X - 2.006, 7.073*X + 100.008, 8.092*X + 116.676, 10.766*X + 100.112, and 10.974*X + 124.423, respectively, where X is the soil depth measured in Centimeters. 3) All of the equations mentioned above were statistically reliable and therefore easily applicable in practical business affairs.

Submarine Layer Structure By Seismic Reflection Survey Between Geoje Island And Namhae Island (탄성파 탐사로 본 거제도 남해도간의 해저지층 구조)

  • Song, Moo-Young;Jo, Kyu Chang
    • 한국해양학회지
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 1978
  • A seismic reflection Survey was carried out in the offshere area between Geoje Island and Namhae Island, utilizing the echosounder with the frequency 28KHz and thd Uniboom with the filter band 800∼2000Hz. The results show the submarine topography, sedimentary layer structure and the depth distribution of the base rock. The water depth of the sea in the survey area is less than 80m; up to 40m contour line the sea bottom surface has a slight dip(about 1/1000), while in the zone deeper than 40m the bottom topography has a irregular relief. The thickness of the whole sedimentary deposit is about 20∼70m and divided into 3 layers: Upper layer(A layer) with horizontal laminae, intermediate layer(B layer) with cross-bedding and groove structure, and lower layer(C layer) not showing any sedimentary structure on the seismic reflection profile. The surface of the base rock is deeper gradually in the south-eastern part of the survey area and extends to 140m depth. The vertical sediments sequences, composed of B layer and A layer, show the type of transgressive sequences. It is interpreted that B layer was formed at one period when the sea level was lower 40∼60 than the present and ince then, following the rising of the sea level, A layer was deposited.

  • PDF

Vegetation Restoration Model of Pinus thunbergii in Urban Areas (도시지역 곰솔림의 식생복원모델)

  • Kim, Seok-Kyu
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.2
    • /
    • pp.151-162
    • /
    • 2011
  • The purpose of this study is suggest to restoration model of Pinus thunbergii in Saha-gu, Busan Metropolitan City. The result of this study is summarized as follows; As the results of this study, vegetation restoration model is presented by separating community planting and edge planting. The community planting species of tree layer were Pinus thunbergii and Quercus acutissima and Quercus dentata and Quercus serrata and Quercus alienna and Quercus variabilis. The community planting species of subtree layer were Platycarya strobilacea and Prunus sargentii and Styrax japonica and Eurya japonica and Morus bombycis. The community planting species of shrub layer are Ulmus pavifolia and Ulmus davidiana and Lindera obtusiloba and Elaeagnus macrophylla and Mallotus japonicus and Ligustrum obtusifolium and Sorbus alnifolia and Rhus trichocarpa and Zanthoxylum schinifolium and Rosa wichuraiana and Rhus chinensis and Viburnum erosum and Rhododendron mucronulatum and Rhododendron yedoense and Indigofera pseudotinctoria. And the planting species of edge vegetation are Japanese Angelica and Symplocos chinensis and Pittosporum tobira and Lespedeza maximowiczii and Lespedeza bicolor and Rubus coreanus and Rubus idaeus and Vitis thunbergii and Ampelopsis brevipedunculata and Rosa multiflora. Considering the population of individuals up to layers in each $400m^2$ area, it was composed of 24 in tree layer, 35 in subtree layer, 410 in shrub layer and 34% herb layer in the Pinus thunbergii community. And the average of breast-high area and canopy area was $10,852cm^2$ in tree layer, in subtree layer $1,546cm^2$, in shrub layer $1,158,660cm^2$. The shortest distance between trees was calculated as 2.0m in tree layer, 1.9m in subtree layer.

Low-Latency Handover Scheme Using Exponential Smoothing Method in WiBro Networks (와이브로 망에서 지수평활법을 이용한 핸드오버 지연 단축 기법)

  • Pyo, Se-Hwan;Choi, Yong-Hoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.3
    • /
    • pp.91-99
    • /
    • 2009
  • Development of high-speed Internet services and the increased supply of mobile devices have become the key factor for the acceleration of ubiquitous technology. WiBro system, formed with lP backbone network, is a MBWA technology which provides high-speed multimedia service in a possibly broader coverage than Wireless LAN can offer. Wireless telecommunication environment needs not only mobility support in Layer 2 but also mobility management protocol in Layer 3 and has to minimize handover latency to provide seamless mobile services. In this paper, we propose a fast cross-layer handover scheme based on signal strength prediction in WiBro environment. The signal strength is measured at regular intervals and future value of the strength is predicted by Exponential Smoothing Method. With the help of the prediction, layer-3 handover activities are able to occur prior to layer-2 handover, and therefore, total handover latency is reduced. Simulation results demonstrate that the proposed scheme predicts that future signal level accurately and reduces the total handover latency.

  • PDF

Retardation of Massive Spalling by Palladium Layer Addition to Surface Finish (팔라듐 표면처리를 통한 Massive Spalling 현상의 억제)

  • Lee, Dae-Hyun;Chung, Bo-Mook;Huh, Joo-Youl
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.11
    • /
    • pp.1041-1046
    • /
    • 2010
  • The reactions between a Sn-3.0Ag-0.5Cu solder alloy and electroless Ni/electroless Pd/immersion Au (ENEPIG) surface finishes with various Pd layer thicknesses (0, 0.05, 0.1, 0.2, $0.4{\mu}m$) were examined for the effect of the Pd layer on the massive spalling of the $(Cu,Ni)_6Sn_5$ layer during reflow at $235^{\circ}C$. The thin layer deposition of an electroless Pd (EP) between the electroless Ni ($7{\mu}m$) and immersion Au ($0.06{\mu}m$) plating on the Cu substrate significantly retarded the massive spalling of the $(Cu,Ni)_6Sn_5$ layer during reflow. Its retarding effect increased with an increasing EP layer thickness. When the EP layer was thin (${\leq}0.1{\mu}m$), the retardation of the massive spalling was attributed to a reduced growth rate of the $(Cu,Ni)_6Sn_5$ layer and thus to a lowered consumption rate of Cu in the bulk solder during reflow. However, when the EP layer was thick (${\geq}0.2{\mu}m$), the initially dissolved Pd atoms in the molten solder resettled as $(Pd,Ni)Sn_4$ precipitates near the solder/$(Cu,Ni)_6Sn_5$ interface with an increasing reflow time. Since the Pd resettlement requires a continuous Ni supply across the $(Cu,Ni)_6Sn_5$ layer from the Ni(P) substrate, it suppressed the formation of $(Ni,Cu)_3Sn_4$ at the $(Cu,Ni)_6Sn_5/Ni(P)$ interface and retarded the massive spalling of the $(Cu,Ni)_6Sn_5$ layer.