• Title/Summary/Keyword: launch performance

Search Result 459, Processing Time 0.027 seconds

Comparison of the Mission Performance of Korean GEO Launch Vehicles for Several Propulsion Options (시스템 구성에 따른 정지궤도 발사체의 임무성능 비교)

  • Hong, Mir;Yang, Seong-Min;Kim, Hye-Sung;Yoon, Youngbin;Choi, Jeong-Yeol
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.2
    • /
    • pp.60-71
    • /
    • 2017
  • A trajectory analysis program is developed using a 3DOF trajectory model for the performance analysis of geostationary launch vehicles by system options. Launch trajectory and the performance of injection at GTO was estimated using this program for several propellant options, engine types, number of engines and the location of launch site. Results of the analysis presents that the possibility of mission accomplishment by several design options using domestic launch sites and the development direction of GEO launch vehicles.

Error Model Analysis and Performance Evaluation for the Rapid Alignment Technique of Projectile Navigation System in Inclined Launch Systems (경사 고각 발사 시스템에서의 발사체 항법장치 급속 초기정렬기법에 대한 오차모델 분석 및 성능평가)

  • Park, Sebeen
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.4
    • /
    • pp.195-204
    • /
    • 2022
  • In this paper, we described the rapid initial alignment techniques of projectile navigation system for use in inclined launch systems. One-shot alignment technique, one of the rapid initial alignment techniques, is possible to align a navigation system within seconds because it uses external information from an launcher navigation system. However, since it has only been used in vertical launch systems, its performance in inclined launch systems has not been verified. Therefore, this paper analyzed the error elements that occur when the one-shot alignment technique is applied to the inclined launch system, and introduced a method to improve the alignment performance by minimizing those errors. Additionally, By simulating and testing the performance of the proposed alignment technique, it was verified that it is effective even in an environment where a real navigation system is used.

Trend Analysis based Strategy Evaluation for Launch Vehicle Industry in Korea (한국의 우주발사체 산업 발전을 위한 우주발사서비스 시장진입 전략 평가)

  • Hong, Seulki;Ahn, Jaemyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.10
    • /
    • pp.936-942
    • /
    • 2015
  • This paper suggests the significant strategies and their priority to deal with space transportation market trends. First, market trends related with technical improvement and change in demand are analyzed by the literature research. The three key trends are obtained: 'Increasing Demand of High-Performance Launch Vehicles', 'Rising of Low-Price Launch Vehicles', and 'Rising of Dual/Multi-Launch'. And then, strategies for developing the launch vehicle industry in Korea are selected from several studies about commercialization of Korean launch vehicle. The strategies are evaluated by the experts through pairwise comparison matrix and the criteria for this process is how significantly does the strategy effect on the launch vehicle industry through market assessment. As a result, reliable order of priority among the strategies are obtained. Under the three key trends, strategy to enhance reliability is most important. And, strategy to have price competitiveness has secondary priority to deal with 'Rising of Low-Price Launch Vehicles' trend and 'Rising of Dual/Multi-Launch' trend. On the contrary, strategy of government's support is secondary under 'Increasing Demand of High-Performance Launch Vehicles' trend.

Development and Performance test of Mechanical Support Equipment for Assebmly/Integration of KSLV-I (KSLV-I 총조립용 기계지원장비 개발 및 성능시험)

  • Jin, Seung-Bo;Chung, Eui-Seung
    • Aerospace Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.116-124
    • /
    • 2010
  • Ground complex composed of Assembly Complex(AC) and Launch Complex(LC) which is located on Oenarodo space center in Kohung is necessary for successful launching of KSLV-I. AC performs accepting of a KSLV-I 1st stage and 2nd stage, stage assembly, the integrated launch vehicle, the checked out, and all kinds of performance test, pre-launch tests and processing. At AC, the mechanical support equipments, that is called the technological equipments, are installed in the Launch Vehicle Assembly Test Building(LVATB). These technological equipments have diverse forms of an interface with mechanical/electric device of the launch vehicle and have to provide a condition and the performance guarantee of an optimum in the launching operation process. In this paper, the requirements specification and manufacturing performance test for the mechanical support equipments which are used in the assembly/disassembly and test of the launch vehicle are introduced.

Maximum Launch Range and F-pole Evaluation For Semi-Active Radar Missile (반능동 레이더 미사일에 대한 최대 사거리 및 F-pole 평가)

  • Kwon, Ky-Beom
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.92-98
    • /
    • 2002
  • In this study, maximum launch range and F-pole are evaluated and analyzed for the semi-active radar missile concerning various launch condition, performance limitation and target maneuvers. Furthermore, general evasion maneuvers are considered when shooter approaches to target with head-on conditions. A point-mass target, shooter and missile model is used including aircraft and missile dynamics. More realistic missile motion simulation is conducted using aerodynamic performance data, geometry, performance limitation, radar seeker performance and so on. Maximum launch range, which is the distance for intercept satisfying target and missile motion and performance, is evaluated using root finding method. F-pole, which is the distance between target and shooter when intercept is completed, is evaluated assuming that shooter maneuvers through pursuit guidance to target.

A Process of the Technical Performance Management for A Space Launch Vehicle R&D Project (우주발사체 개발사업을 위한 기술성능관리 프로세스)

  • Yoo, Il Sang;Cho, Dong Hyun;Kim, Keun Taek
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.10 no.2
    • /
    • pp.71-79
    • /
    • 2014
  • To enhance success probability of a system development project, its overall risk level should be minimized through systematically managing schedules, costs, and technical performances. However, Attempts to manage technical performance compared to numerous efforts to control costs and schedules in such projects are deficient. Particularly, a space launch vehicle, a large complex system, development project is much less likely to meet its technical performance objectives due to its technological difficulty, along with schedule delay and cost overrun. The technical performance management (TPM) is a method for tracking and managing technical progress in order to achieve technical performance targets within schedule and budget. In this paper, we investigate applications of the TPM in several space launch vehicle development projects. Then we propose and validate the TPM process to achieve a successful mission in such projects.

Analysis of Flight Performance Reserve for Upper Stage of Satellite Launch Vehicles (위성발사체 상단의 비행성능여유 분석)

  • Song, Eun-Jung;Choi, Jiyoung;Cho, Sang-bum;Sun, Byung-Chan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.5
    • /
    • pp.386-392
    • /
    • 2017
  • This paper considers the analysis of the flight performance reserve, which is required propellant to compensate various launch vehicle performance deviations, to inject the payload of a 3-staged launch vehicle to a circular sun synchronous orbit at a height of 700 km. The various error sources, which affect the orbit injection accuracy, and their uncertainty are defined first. Then the sensitivity analysis, which has the advantage that each error source effect can be investigated independently, is performed for the extreme ${\pm}3{\sigma}$ conditions of the launch vehicle performance errors. Monte carlo simulations are also conducted to compute the propellant reserve, which can consider the combined effects of each error source. Finally the obtained flight performance reserves by the two approaches are compared and it is confirmed that they show similar results.

Reducing the User-perceived Latency of Browsers with NVRAM

  • Kim, Kyusik;Cho, Yongwoon;Kim, Seongmin;Kim, Taeseok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.1
    • /
    • pp.23-28
    • /
    • 2017
  • Non-volatile RAM (NVRAM) provides many opportunities to improve the performance of computing devices. In this paper, we present an approach that reduces the user-perceived latency of browsers by using NVRAM. To this end, we first analyze the browser launch process, and then employ several techniques that improve the performance of each step by using NVRAM. Specially, we focus on minimizing the launch time of browser by 1) prefetching the block sequence required for browser launch, 2) caching the web resources in the fast NVRAM, and 3) reusing the displayed bitmap data in the frame buffer. Through implementation, we show that our scheme significantly reduces the launch time of browsers.

LCS(Launch Control System) Prototype Performance Analysis (발사관제시스템 프로토타입 성능 분석)

  • Hong, Ii Hee;Kim, Yang Mo
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.2 no.1
    • /
    • pp.54-60
    • /
    • 2006
  • LCC(Launch Control Center) in NARO space center performs a data monitoring and control through the interface to the external system of launch vehicle. Launch control function needs high reliability and processing speed. Hence, LCS(Launch Control System) is made up a real time system. An important role of the LCS Prototype is discovering a risk element and minimizing it through developing a launch control system. This paper deals with a real time data processing among the simulator, gateway, data distribution server, command and control server which is involving LCS Prototype.

  • PDF

KSLV-I Assembly Complex System Design (KSLV-I 조립콤플렉스 시스템 설계)

  • Jin, Seung Bo;Park, Jung Ju
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.2 no.1
    • /
    • pp.37-41
    • /
    • 2006
  • The KSLV-I satellite launch vehicle will be launched in a space center currently under construction. The Space Center which is an advance post base of space development of Korea is located on Oenaro island in Kohung, South Cholla Province. A Ground Complex of the Space Center consists of an AC(Assembly Complex), a LC(Launch Complex), and a MCC(Mission Control Center). Assembly and test facilities are located in the AC in which stage assembly, integrated assembly, check-up, certification test, and pre-launch test are made effectively. A launch pad, fuel supply facilities, a launch control center and associated supporting facilities are located in the LC, and the MCC has control over the space center. These ground complex facilities have diverse forms of an interface with mechanical device, electric device, and etc. These should also provide optimum condition and performance during launch operation processes of the launch vehicle. This paper introduces the result of R&D for the AC of the ground complex performed during system design period.

  • PDF