• Title/Summary/Keyword: lattice girder measurements

Search Result 5, Processing Time 0.016 seconds

Field Measurements for the Lattice Girder and the Shotcrete Lining (격자지보와 숏크리트 계측에 대한 현장실험 연구)

  • Kim, Hak-Joon;Jin, Soo-Hwan;Park, Si-Hyun
    • The Journal of Engineering Geology
    • /
    • v.18 no.1
    • /
    • pp.93-102
    • /
    • 2008
  • The use of lattice girder is increased at the tunnel site in Korea because of the several advantages over the traditional H-steel rib. The lattice girder supports the ground with shotcretes, forming a combined support system. Therefore, stress measurements at the lattice girder are necessary to calculated the ground loads. However, field measurements at the lattice girder are rarely performed at the tunnel site. The proper way of stress measurements for the lattice girder is not fully established in Korea. The correction of stress measurements at the shotcretes is often disregarded even though the measured stresses include non-stress related strains. Results of the stress measurements obtained from the lattice girder and non-stress shotcretes are used to improve the credibility of the stress measurements at the primary lining.

Tunnel Instrumentation on the Lattice Girder using Load Cells (로드셀을 이용한 격자지보 계측)

  • Kim, Hak Joon;Kang, Hee-Won
    • The Journal of Engineering Geology
    • /
    • v.22 no.3
    • /
    • pp.323-330
    • /
    • 2012
  • The use of lattice girder is increased rapidly as a substitute for H-steel ribs at the tunnel sites in Korea. Ground loads acting on the tunnel are supported by shotcrete and lattice girders. To assess the safety of the tunnel, it is essential to obtain field measurements for the lattice girders; however, lattice girder measurements have rarely been performed at tunnel sites, and the method of measurement is not well established. In the present study we suggest a load cell method for the instrumentation of tunnels with lattice girders. Actual measurements of ground loads acting on lattice girders are presented for a specific tunnel under construction.

Suggested Method for the Tunnel Instrumentation on the Lattice Girder from the Results of the Laboratory Test using Load Cells (로드셀 실내시험을 통한 터널 격자지보 계측 기법)

  • Kim, Hak-Joon;Park, Si-Hyun;Lee, Ki-Se
    • The Journal of Engineering Geology
    • /
    • v.19 no.3
    • /
    • pp.269-275
    • /
    • 2009
  • The use of lattice girder is increased at the tunnel site in Korea recently for the substitute of H-steel rib. However, field measurements at the lattice girder are rarely performed at the tunnel site and the method of the measurement is not well established. The use of the vibrating wire strain gauges used for the H-steel rib was proven to be not suitable for the strain measurements of the lattice girder according to the previous research. The credibility of the load cell was investigated using laboratory compression tests for load cells, specially manufactured for the lattice girder far this study, installed at the specimen of the lattice girder. The method of the tunnel instrumentation for the lattice girder using the load cell is given from the interpretation of the compression test results.

Evaluation of the performance for the reformed lattice girders (개량형 격자지보재의 성능 평가)

  • Kim, Hak-Joon;Bae, Gyu-Jin;Kim, Dong-Gyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.3
    • /
    • pp.201-214
    • /
    • 2013
  • Lattice girders are widely used as a substitute for H-steel ribs at domestic tunnels. However, lattice girders have a weak point in terms of the support capacity compare to H-steel ribs because of the lower stiffness and the weakness of the welded parts. To improve the weakness of the lattice girder, reformed lattice girders are developed in Korea by adding one more spider and having flat welded surface. Laboratory tests and field measurements were performed for the original and the reformed lattice girders to evaluate the performance of the reformed lattice girders. According to the laboratory compression test, reformed lattice girders have 16% higher load bearing capacity than that of original lattice girders. Reformed lattice girders are more stable than original lattice girders because reformed lattice girders tend to bend less according to the field measurements.

Performance Evaluation of High Strength Lattice Girder by Structural Analyses and Field Measurements (구조해석과 현장계측에 의한 고강도 격자지보재의 성능 평가)

  • Lee, Jeo-Won;Min, Kyong-Nam;Jeong, Ji-Wook;Roh, Byoung-Kuk;Lee, Sang-Jin;Ahn, Tae-Bong;Kang, Seong-Seung
    • The Journal of Engineering Geology
    • /
    • v.30 no.3
    • /
    • pp.237-251
    • /
    • 2020
  • This study examined structural analysis of supports in tunnel and displacement and underground stress of tunnel by measurement, in order to evaluate the performance of high-strength lattice girders developed as a substitute for H-profiles. According to the three-dimensional nonlinear structural analysis results of the tunnel support, the load and displacement relationship between the H-profiles and the high-strength lattice girders showed almost the same behavior, and the maximum load of the high-strength lattice girders were 1.0 to 1.2 times greater than the H-profiles. By the results of the three-dimensional tunnel cross-section analysis of the supports, the axial force was occurred largely in the lower left and right sides of the tunnel, and showed a similar trend to the field test values. In the results of the measurement of the roof settlement and rod extension, the final displacement of the steel arch rib (H-profile) and high-strength lattice girder section in tunnel was converged to a constant value without significant difference within the first management standard of 23.5 mm. According to the results of underground displacement measurement, the final change amount of the two support sections showed a slight displacement change, but converged to a constant value within the first management standard of 10 mm. By the results of measurement of shotcrete stress and steel arch rib stress, the final change amount of the two support sections showed a slight stress change, but converged to a constant value within the first management standard of 81.1 kg/㎠ and 54.2 tonf.